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What are currently the options for higher-order flow analysis?
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Call /return mismatch.

But in a higher-order language, like Scheme or JavaScript,
call/return is the fundamental control-flow mechanism.
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CFA2 [ESOP 10]

Approximate a program as a PDA.
Use the stack for return-point information.
Unbounded call/return matching.

A pushdown flow analysis [Sharir—Pnueli 81, Reps et al. 95].
First-class functions, tail calls.

Scheme implementation
» More precise than k-CFA

» Usually smaller state space
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Summarization + first-class control #

Stack size is unbounded.
Summarization gets around the infinite state-space.
But requires proper nesting of calls and returns.

Many constructs break call/return nesting:
» Generators (JavaScript, Python)
» Coroutines (Lua, Simula67)

» First-class continuations (Scheme, SML/NJ, Scala)
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Finite-state models
X Call/return mismatch, many spurious flows
v/ First-class control

Pushdown models
v/ Call/return matching, precise
X No first-class control

Our contribution
v/ Call/return matching, precise
v/ First-class control



Overview

Background on pushdown models

Restricted continuation-passing style (RCPS)

Abstract semantics for RCPS

Generalizing summarization



Why pushdown models?

(define app (A (f e) (f e)))
(define id (A (x) x))

(let* ((n1 (app id 1))
(n2 (app id 2)))
(+ n1 n2))
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Call/return mismatch causes spurious flow of data
= commonly called functions pollute the analysis.
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Why pushdown models?

1
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2 A Y 8

app id 1

3 nl

Call/return mismatch causes spurious control flow
= cannot accurately calculate stack change.
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Summarization

(define (g x)

)

(define (f y)
Li: (g5 -3)
L2: (g "a" 2)

L3: (g127)

)

The computation in g doesn’t depend on the call site.

Callers Summaries
(g, L1, Num x Num) (g, Num x Num, Num)
(g, L2, Num x Str) (g, Num x Str, Str)

(g, L3, Num x Num)

What if g calls an escaped continuation?

The target may not even be on the stack.

10



Continuation-passing style

Each term is either a user or a continuation term.

(define (fact n k)
(if (= n 0)
(k 1)
(fact (- n 1) (A (amns) (k (* n ans))))))

11



Escaping continuations in CPS

Continuations captured in user closures may escape.
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Escaping continuations in CPS

Continuations captured in user closures may escape.

M\ (f k1) (f (o (u k2) (k1 w) k1))
N (k1) (k1 o (uk2) (f uk1))))

Manage CPS with a stack [Kranz et al. 86, Orbit].
Stack change from birth to use can be arbitrary.

L

call/cc

12



Restricted CPS [PEPM 11]

Def: a continuation variable can appear free in a user lambda
in operator position only.
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Restricted CPS [PEPM 11]

Def: a continuation variable can appear free in a user lambda
in operator position only.

V O k1) (f O(u k2) (k1 w) k1))
X O k1) k1 ZN(u k2) (f u k1))))
V O Of k1) k1 O(u k2) (f u A& Gl v))))))

Can prove that continuation arguments live on the stack.
Force arbitrary stack change to happen only at continuation calls.
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Theoretical formulation of CFA2

Abstract interpretation of programs in RCPS A-calculus.

14



Theoretical formulation of CFA2

Abstract interpretation of programs in RCPS A-calculus.

Concrete semantics Actual program behavior

14



Theoretical formulation of CFA2

Abstract interpretation of programs in RCPS A-calculus.

Concrete semantics Actual program behavior
J
Abstract semantics Reminiscent of a PDA,

infinite state space

14



Theoretical formulation of CFA2

Abstract interpretation of programs in RCPS A-calculus.

Concrete semantics Actual program behavior
J
Abstract semantics Reminiscent of a PDA,
infinite state space
3
Local semantics No stack, finite state space
+ summarization Weaves calls and returns together

14



Semantics for escaping continuations

Control enters a user function:

([ Cuk) calD], d, &, st, h) ~ (call, st', i)
st’ = push([u — d][k — &], st)
h(u)ud (v =u) A Hy(u)
W(v) = { h(k)U{(& st)} (v =k)AH(k)
h(v) o/w
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Semantics for escaping continuations

Calling a continuation:

([(q 7], st, h)~ (&.d, st h)

d=A,(e st h)

{(q.st)} Lam»(q)
(€. st') € 9 {(st(q). pop(st))}  S2(7. a)
h(a) Ha (. 9)

16
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Summarization for RCPS

A1 (x k1) ... (yk2) ...(k1e) ...) ...)

Traditional summaries: from the entry of X\» to (k1 e).

Instead, record entries of A\ as we see them.
Create cross-procedure summaries from A; entries to (k1 e).

17
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(A1 x k1)

o0 (v k2)

o

Num As

Callers: (A2, A5, Num)

Summaries:

..kl e) ..
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Summarization for RCPS

A kD) ...O0 (yk2) ... (k1 e) ...)

SN

Num As 7?7 Num

Callers: (A2, As, Num), (A1, Aa, Str), (A1, A7, Bool)
Summaries:
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Summarization for RCPS

g (x k1) ... Op (7 k2) ...(k1 e) ...)

OO

Num s 7  Num

Callers: (A2, As, Num), (A1, Ag, Str), (A1, A7, Bool)
Summaries: (A1, Str, Num), (A1, Bool, Num)
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Summarization for RCPS

g (x k1) ... Op (7 k2) ...(k1 e) ...)

OO

Num s 7  Num

Callers: (A2, As, Num), (A1, A4, Str), (A1, A7, Bool)
Summaries: (A1, Str, Num), (A1, Bool, Num)

18



Conclusions

Pushdown analyses model call/return faithfully.
Fewer spurious control and data flows.
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Conclusions

Pushdown analyses model call/return faithfully.
Fewer spurious control and data flows.

In Restricted CPS continuations escape in a well-behaved way.
Handle escaping continuations by generalizing summaries.

CFA2 a drop-in replacement of k-CFA.

Thank you!
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