
CFA2: Pushdown Flow Analysis

for Higher-Order Languages

A dissertation presented by

Dimitrios Vardoulakis

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

August 20, 2012

Abstract

In a higher-order language, the dominant control-flow mechanism is func-

tion call and return. Most higher-order flow analyses do not handle call

and return well: they remember only a bounded number of pending calls

because they approximate programs as finite-state machines. Call/return

mismatch introduces precision-degrading spurious execution paths and in-

creases the analysis time.

We present flow analyses that provide unbounded call/return matching

in a general setting: our analyses apply to typed and untyped languages,

with first-class functions, side effects, tail calls and first-class control. This

is made possible by several individual techniques. We generalize Sharir and

Pnueli’s summarization technique to handle expressive control constructs,

such as tail calls and first-class continuations. We propose a syntactic classi-

fication of variable references that allows precise lookups for non-escaping

references and falls back to a conservative approximation for references cap-

tured in closures. We show how to structure a flow analysis like a traditional

interpreter based on big-step semantics. With this formulation, expressions

use the analysis results of their subexpressions directly, which minimizes

caching and makes the analysis faster. We present experimental results from

two implementations for Scheme and JavaScript, which show that our anal-

yses are precise and fast in practice.

iii

Acknowledgments

Thanks to my parents, Manolis and Litsa, and my sisters, Maria and Theo-

dosia, for their love and support. Thanks to my loving wife Laura for being

in my life. Meeting her was the best side effect of my Ph.D.

I have been very lucky to have Olin as my advisor. He shared his vision for

programming languages with me, believed in me, and gave me interesting

problems to solve. He was also the source of many hilarious stories.

Thanks to my thesis committee members, Alex Aiken, Matthias Felleisen

and Mitch Wand for their careful comments on my dissertation. Thanks to

all members of the Programming Research Lab at Northeastern; I learned

a tremendous amount during my time there. Thanks to Pete Manolios and

Agnes Chan for their advice and encouragement. Danny Dubé visited North-

eastern for a semester, showed interest in my work and found the first pro-

gram that triggers the exponential behavior in CFA2. The front-office staff

at the College of Computer Science, especially Bryan Lackaye and Rachel

Kalweit, always made bureaucracy disappear.

Thanks to Dave Herman and Mozilla for giving me the opportunity to

apply my work to JavaScript. The summer of 2010 in Mountain View was

one of the best in my life. Mozilla also graciously supported my research for

two years.

I was in Boston during the Christmas break of 2008. At that time, I had

settled on what the abstract semantics of CFA2 would look like, but had not

figured out how to get around the infinite state space. On December 29,

while googling for related papers, I ran into Swarat Chaudhuri’s POPL 2008

paper. His beautiful description of summarization in the introduction made

me realize that I could use this technique for CFA2.

Nikos Papaspyrou, my undergraduate advisor, introduced me to the world

of programming language research. My uncle Yiannis tutored me in math

when I was in high school. He was the best teacher I ever had. Vassilis

v

vi ACKNOWLEDGMENTS

Koutavas and I shared an apartment in Boston for three years. Thanks for

the great company. Last but not least, thanks to my good friends in Athens

and Heraklion, who make every trip home worthwhile.

Notes to the reader

A reader with the background of a beginning graduate student in program-

ming languages should be able to follow the technical material in this dis-

sertation. In particular, we assume good understanding of basic computer-

science concepts such as finite-state machines, pushdown automata and

asymptotic complexity. We also assume familiarity with the λ-calculus and

operational semantics. Finally, some high-level intuition about program

analysis and its applications is helpful, but we do not assume any knowl-

edge of higher-order flow analysis.

We develop the theory of CFA2 in the untyped λ-calculus. However, we

take the liberty to add primitive data types such as numbers and strings in

the examples to keep them short and clear.

Parts of this dissertation are based on material from the following papers:

CFA2: a Context-Free Approach to Control-Flow Analysis
Dimitrios Vardoulakis and Olin Shivers

European Symposium on Programming (ESOP), pages 570–589, 2010

Ordering Multiple Continuations on the Stack
Dimitrios Vardoulakis and Olin Shivers

Partial Evaluation and Program Manipulation (PEPM), pages 13–22, 2011

CFA2: a Context-Free Approach to Control-Flow Analysis
Dimitrios Vardoulakis and Olin Shivers

Logical Methods in Computer Science (LMCS), 7(2:3), 2011

Pushdown Flow Analysis of First-Class Control
Dimitrios Vardoulakis and Olin Shivers

International Conf. on Functional Programming (ICFP), pages 69–80, 2011

vii

Contents

Abstract iii

Acknowledgments v

Notes to the reader vii

Contents ix

1 Introduction 1

2 Preliminaries 5

2.1 Abstract interpretation . 5

2.2 The elements of continuation-passing style 6

2.2.1 Partitioned CPS . 7

2.2.2 Syntax and notation 8

2.2.3 Concrete semantics 9

2.2.4 Preliminary lemmas 12

3 The kCFA analysis 15

3.1 Introduction to kCFA . 15

3.2 The semantics of kCFA . 18

3.2.1 Workset algorithm 20

3.2.2 Correctness . 20

3.3 Limitations of finite-state analyses 22

3.3.1 Imprecise dataflow information 22

3.3.2 Inability to calculate stack change 23

3.3.3 Sensitivity to syntax changes 23

3.3.4 The environment problem and fake rebinding 24

3.3.5 Polyvariant versions of kCFA are intractable 25

ix

x CONTENTS

3.3.6 The root cause: call/return mismatch 26

4 The CFA2 analysis 27

4.1 Setting up the analysis . 28

4.1.1 The Orbit stack policy 28

4.1.2 Stack/heap split . 28

4.1.3 Ruling out first-class control syntactically 30

4.2 The semantics of CFA2 . 30

4.2.1 Correctness . 34

4.2.2 The abstract semantics as a pushdown system 36

4.3 Exploring the infinite state space 37

4.3.1 Overview of summarization 38

4.3.2 Local semantics . 39

4.3.3 Workset algorithm 42

4.3.4 Correctness . 44

4.4 Without heap variables, CFA2 is exact 46

4.5 Stack filtering . 47

4.6 Complexity . 48

4.6.1 Towards a PTIME algorithm 50

5 CFA2 for first-class control 53

5.1 Restricted CPS . 54

5.2 Abstract semantics . 55

5.2.1 Correctness . 57

5.3 Summarization for first-class control 58

5.3.1 Workset algorithm 59

5.3.2 Soundness . 62

5.3.3 Incompleteness . 63

5.4 Variants for downward continuations 64

6 Pushdown flow analysis using big-step semantics 67

6.1 Iterative flow analyses . 68

6.2 Big CFA2 . 68

6.2.1 Syntax and preliminary definitions 68

6.2.2 Abstract interpreter 69

6.2.3 Analysis of recursive programs 72

6.2.4 Discarding deprecated summaries to save memory . 74

CONTENTS xi

6.2.5 Analysis of statements 75

6.3 Exceptions . 75

6.4 Mutation . 78

6.5 Managing the stack size . 81

7 Building a static analysis for JavaScript 85

7.1 Basics of the JavaScript object model 86

7.2 Handling of JavaScript constructs 87

8 Evaluation 93

8.1 Scheme . 93

8.2 JavaScript . 95

8.2.1 Type inference . 95

8.2.2 Analysis of Firefox add-ons 99

9 Related work 107

9.1 Program analyses for first-order languages 107

9.2 Polyvariant analyses for object-oriented languages 108

9.3 Polyvariant analyses for functional languages 110

9.4 Analyses employing big-step semantics 111

9.5 JavaScript analyses . 112

10 Future work 115

11 Conclusions 119

A Proofs 121

A.1 Proofs for CFA2 without first-class control 122

A.2 Proofs for CFA2 with first-class control 139

B Complexity of the CFA2 workset algorithm 147

Bibliography 149

CHAPTER 1

Introduction

Flow analysis seeks to predict the behavior of a program without running it.

It reveals information about the control flow and the data flow of a program,

which can be used for a wide array of purposes.

• Compilers use flow analysis to perform powerful optimizations such as in-

lining, constant propagation, common-subexpression elimination, loop-

invariant code motion, register allocation, etc.
• Flow analysis can find errors that are not detected by the type system,

such as null dereference and out-of-bounds array indices. In untyped

languages, it can find type-related errors.

• Flow analysis can prove the absence of certain classes of errors, e.g., show

that a program will not throw an exception or that casts will not fail.

• Last, modern code editors utilize flow analysis to assist with develop-

ment: refactoring, code completion, etc.

Flow analysis works by simulating the execution of a program using a

simplified, approximate semantics. There are several reasons for this. First,

the properties of interest are often undecidable. Also, the analysis does not

know the inputs that will be supplied to the program at runtime; it must

produce valid results for all possible inputs. Last, the program may consist

of several compilation units, some of which are not available to the analysis.

In the present work, we study flow analysis for higher-order languages.

A higher-order language allows computation to be packaged up as a value.

The primary way to treat computation as data is through first-class functions.

Higher-order languages provide expressive features that allow the con-

cise and elegant description of computations. Unsurprisingly, the expressive-

ness of higher-order languages makes flow analysis difficult.

1

2 CHAPTER 1. INTRODUCTION

• First and foremost, control flow in higher-order programs is not syntac-

tically apparent. For example, in functional programs we see call sites

with a variable in operator position, e.g., (x e). At runtime, one or more

functions will flow to x and get called—data flow induces control flow.

Consequently, higher-order flow analyses must reason about control flow

and data flow in tandem.

• Higher-order languages often lack static types. They may also allow

overloading of operators and automatic conversion of values from one

type to another at runtime. Flow analyses must cope with such flexibility.

• Some higher-order languages provide powerful control constructs such

as tail calls, exceptions, generators and first-class continuations. These

constructs make it hard to predict the target of a control-flow transfer at

compile time.

Most flow analyses approximate programs as finite graphs of abstract

machine states [61, 3, 68, 75, 44].1 Each node in such a graph represents a

program point plus some amount of information about the environment and

the calling context. The analysis considers every path from the start to the

end node of the graph to be a possible execution of the program. Therefore,

execution traces can be described by a regular language.

This approximation does not model function call and return well; it per-

mits paths that do not properly match calls with returns. During the analysis,

a function may be called from one program point and return to a different

one. Call/return mismatch causes spurious flow of data, which decreases

precision.

The effects of call/return mismatch in a first-order flow analysis can per-

haps be mitigated by the fact that most control flow in first-order languages

happens with conditionals and loops, not with function calls. However, func-

tion (and method) calls are central in higher-order programs, so modeling

them faithfully is crucial for a flow analysis.

Pushdown analyses can match an unbounded number of calls and returns.

These analyses approximate programs as pushdown automata or equivalent

machines. By pushing return points on the stack of the automaton, it is pos-

sible to always return to the correct place. Pushdown analyses have long

been used for first-order languages [59, 52, 21, 6, 2]. However, existing

1Citations are listed in chronological order.

3

pushdown analyses for higher-order languages [45, 50, 66, 31, 17] are not

sufficiently general, e.g., some apply to typed languages only, and none han-

dles first-class control constructs.

Contributions

In this dissertation, we propose general techniques for pushdown analyses

of higher-order programs. Our main contributions are:

• We generalize the summarization technique of Sharir and Pnueli [59] to

higher-order languages and introduce a new kind of summary edge to

handle tail calls.

• We develop a variant of continuation-passing style that allows effective

reasoning about the stack in the presence of first-class control. We use

this variant to perform pushdown analysis of languages with first-class

control.

• We identify a class of variable references that can and should be handled

precisely by a flow analysis. Most references in typical programs belong

in this class, so handling them well results in significant precision gains.

• We propose structuring a flow analysis like a traditional interpreter, i.e.,
as a collection of mutually recursive functions, using big-step seman-

tics. With this formulation, it becomes possible to minimize caching of

abstract states, which results in a lightweight and fast analysis.

Outline

The rest of this dissertation is organized as follows.

• Chapter 2 provides the necessary background on abstract interpretation

and continuation-passing style (CPS).

• Chapter 3 describes how finite-state analyses work, through the lens of

Shivers’s kCFA analysis [61]. We show that most limitations of finite-

state analyses are direct consequences of call/return mismatch.

• In chapter 4, we present our CFA2 analysis. We formulate CFA2 as an

abstract interpretation of programs in a CPS λ-calculus. CFA2 classifies

every variable reference as either a stack or a heap reference. Stack

references can be handled precisely because they cannot be captured in

heap-allocated closures. We provide examples which show that CFA2

4 CHAPTER 1. INTRODUCTION

overcomes the limitations of finite-state analyses.

In CFA2, abstract states have a stack of unbounded height. Therefore,

the abstract state space is infinite. We describe an algorithm based on

summarization that explores the state space without loss in precision.

We state theorems that establish the correctness of CFA2. Last, we briefly

discuss the complexity of the analysis.

• In chapter 5, we present Restricted CPS and use it to generalize CFA2 to

handle first-class control.

• Chapter 6 presents an alternative approach to higher-order pushdown

analysis, called Big CFA2. Big CFA2 shares some traits with CFA2: the

split between stack and heap references and the use of summaries. We

formulate Big CFA2 as an abstract interpretation of a direct-style λ-

calculus and show how to implement it efficiently. We also present ex-

tensions to the algorithm for mutation and exceptions.

• To provide support for the practical applicability of our ideas, we imple-

mented DoctorJS, a static-analysis tool for the full JavaScript language

based on Big CFA2. Chapter 7 discusses the trade-offs involved in de-

signing a static analysis for JavaScript.

• In chapter 8, we present experimental results. We implemented CFA2

for a subset of Scheme and compared its precision to kCFA. We found

that CFA2 is more precise and usually visits a smaller state space. In

addition, we used DoctorJS for type inference of JavaScript programs

and to study the interaction between browser add-ons and web pages.

The results indicate that DoctorJS is precise, reasonably fast, and scales

to large, real-world programs.

• We present related work in chapter 9, discuss directions for future re-

search in chapter 10 and conclude in chapter 11.

• Appendix A includes proofs of the theorems that establish the correctness

of CFA2.

CHAPTER 2

Preliminaries

This chapter introduces the formal machinery that we use to develop our

analyses: abstract interpretation and continuation-passing style. Abstract in-

terpretation is a method for program analysis created by Cousot and Cousot

[11, 12]. Continuation-passing style is used as an intermediate representa-

tion of programs in several functional-language compilers [67, 38, 4, 34].

2.1 Abstract interpretation

This section describes how to formulate a static analysis as an abstract in-

terpretation. We want to analyze programs written in some Turing-complete

language L. The semantics of L programs can be described by a transition

relation ⇒ between program states. We write ς ⇒ ς ′ to mean that a state ς

transitions to ς ′. This semantics is called the concrete semantics.

The role of the concrete semantics is to evaluate programs; it does not

collect any analysis-related information, e.g., it does not record which func-

tions can be applied at a particular call site. For this reason, we adapt the

concrete semantics to derive the so-called non-standard concrete semantics,

which performs the analysis of interest without loss in precision (see sec.

2.2.3 for an example). The non-standard semantics is incomputable. There-

fore, we must find some relation ; that is an abstraction, i.e., a conservative

approximation, of the non-standard semantics.

Let → be the non-standard concrete transition relation. What does it

mean for ; to approximate →? First, there is a map |·| from concrete to

abstract states. Second, there is an ordering relation v on abstract states

(reflexive, transitive and antisymmetric). We write ς̂ v ς̂ ′ to mean that ς̂ ′ is

more approximate than ς̂. (By convention, abstract elements have the same

5

6 CHAPTER 2. PRELIMINARIES

ς1 → ς2 → . . . → ςn

|ς1| |ς2| . . . |ςn|v v v

ς̂1 ; ς̂2 ; . . . ; ς̂n

Figure 2.1: Relating concrete and abstract executions

names as their concrete counterparts, but with a ̂ symbol over them.) Then,

we prove the following theorem.

Theorem (Simulation). If ς → ς ′ and |ς| v ς̂, then there exists ς̂ ′ such that

ς̂ ; ς̂ ′ and |ς ′| v ς̂ ′.

We say that the abstract semantics simulates the concrete semantics. From

this theorem, it follows that each concrete execution, i.e., sequence of states

related by →, has a corresponding abstract execution that computes an ap-

proximate answer (fig. 2.1). Intuitively, the abstract semantics does not miss

any flows of the concrete semantics, but it may add extra flows that never

happen.

2.2 The elements of continuation-passing style

Before we can perform flow analysis, we need a representation of programs

that facilitates static reasoning. In flow analysis of λ-calculus-based lan-

guages, a program is usually turned to an intermediate form where all subex-

pressions are named before it is analyzed. This form can be Continuation-

Passing Style (CPS), A-Normal Form [22], or ordinary direct-style λ-calculus

where each expression has a unique label [48, ch. 3]. An analysis using one

form can be changed to use another form without much effort.

This work uses CPS. We opted for CPS because it reifies continuations

as λ terms, which makes it suitable for reasoning about non-local control

operators such as exceptions and first-class continuations. For example, we

can define call/cc as a function in CPS; we do not need a special primitive

operator to express it.

This section explains the basics of CPS. In CPS, every function has an

additional formal parameter, the continuation, which represents the “rest of

the computation.” To return a value v to its context, a function calls its con-

tinuation with v. At every function call, we pass a continuation as an extra

2.2. THE ELEMENTS OF CONTINUATION-PASSING STYLE 7

argument. Hence the name Continuation-Passing Style. The process that

turns a program from direct style to CPS is called the CPS transformation.

Let’s see an example. We define a function that computes the discrimi-

nant of a quadratic equation and call it.

(define (discriminant a b c)

(- (* b b) (* 4 a c)))

(discriminant 1 5 4)

The corresponding CPS program is

(define (discriminant a b c k)

(%* b b

(λ (b2) (%* 4 a c

(λ (ac4) (%- b2 ac4 k))))))

(discriminant 1 5 4 halt)

Discriminant takes a continuation parameter k. Assuming left-to-right eval-

uation, (* b b) happens first, followed by (* 4 a c). The % sign signifies

that the primitive operators are now CPS functions: %* takes some numbers,

multiplies them and passes the product to its continuation (similarly for %-).

The last argument of each call is a continuation. The program terminates by

calling its top-level continuation halt .

Notice that the operator and the arguments of every call are atomic ex-

pressions (primitives, constants, variables or lambdas), never calls. There-

fore, in CPS call-by-value and call-by-name evaluation coincide. We must

take the evaluation order into account during the CPS transformation.

2.2.1 Partitioned CPS

Compilers that use CPS usually partition the terms in a program into two dis-

joint sets, the user and the continuation set, and treat user terms differently

from continuation terms.

The functions in the direct-style program become user functions in CPS;

the lambdas introduced by the transformation are continuation functions.

User functions take some user arguments and one continuation argument;

continuations take one user argument. Each call is classified as user or con-

8 CHAPTER 2. PRELIMINARIES

Functions Variables Calls

User discriminant

%* %-

a b c

b2 ac4

(%* b b ...)

(%* 4 a c ...)

(%- b2 ac4 k)

(discriminant 1 5 4 halt)

Continuation
(λ(b2) ...)

(λ(ac4) ...)

halt
k

Table 2.1: User/continuation partitioning for discriminant

tinuation according to its operator. The runtime semantics respects the static

partitioning: user (resp. continuation) values flow only to user (resp. contin-

uation) variables. Table 2.1 shows the partitioning for the discriminant

example. (Even though there are no continuation call sites, the continua-

tions are called implicitly by the primitive functions.)

2.2.2 Syntax and notation

We develop the theory of CFA2 in a CPS λ-calculus with the user/contin-

uation distinction. The syntax appears in fig. 2.2. User and continuation

elements get labels from the disjoint sets ULab and CLab.

Without loss of generality, we assume that all variables in a program

have distinct names and all terms are uniquely labeled. For a particular

program pr , we write L(g) for the label of term g in pr and T (ψ) for the

term labeled with ψ in pr . FV (g) returns the free variables of term g . The

defining lambda of x, written def λ(x), is the lambda that contains x in its list

of formals. For a term g , iuλ(g) is the innermost user lambda that contains g .

Concrete syntax enclosed in J·K denotes an item of abstract syntax. Functions

with a ‘?’ subscript are predicates, e.g., Var ?(e) returns true if e is a variable

and false otherwise.

We use two notations for tuples, (e1, . . . , en) and 〈e1, . . . , en〉, to avoid

confusion when tuples are deeply nested. We use the latter for lists as well;

ambiguities will be resolved by the context. Lists are also described by a

head-tail notation, e.g., 3 :: 〈1, 3,−47〉. We write πi(〈e1, . . . , en〉) to project

the ith element of a tuple 〈e1, . . . , en〉.

2.2. THE ELEMENTS OF CONTINUATION-PASSING STYLE 9

x ∈ Var = UVar + CVar Program variables
u ∈ UVar = a set of identifiers User variables
k ∈ CVar = a set of identifiers Continuation variables
ψ ∈ Lab = ULab + CLab Program labels
l ∈ ULab = a set of labels Labels of user elements
γ ∈ CLab = a set of labels Labels of continuation elements

lam ∈ Lam = ULam + CLam Lambda terms
ulam ∈ ULam ::= (λl(u k) call) User lambdas
clam ∈ CLam ::= (λγ(u) call) Continuation lambdas

call ∈ Call = UCall + CCall Call expressions
UCall ::= (f e q)l Call to a user function
CCall ::= (q e)γ Call to a continuation function

g ∈ Exp = UExp + CExp Atomic expressions
f, e ∈ UExp = ULam + UVar Atomic user expressions
q ∈ CExp = CLam + CVar Atomic continuation expressions

pr ∈ Program = ULam Program to be analyzed

Figure 2.2: Partitioned CPS

2.2.3 Concrete semantics

The execution of programs in Partitioned CPS can be described by a state-

transition system (fig. 2.3). Execution traces alternate between Eval and

Apply states. At an Eval state, we evaluate the subexpressions of a call site

before performing a call. At an Apply , we perform the call. Eval states are

classified as user or continuation depending on their call site, Apply states

depending on their operator.

We use environments (partial functions from variables to values) for vari-

able binding. On entering the body of a function (rules [UAE] and [CAE])

we extend the environment with bindings for the formal parameters.

The function A evaluates atomic expressions, i.e., lambda terms and

variables. The initial execution state I(pr) is a UApply state of the form

((pr , ∅), input , halt), where input is some user closure (ulam, ∅).

Unbounded environment chains Not surprisingly, the concrete state space

is infinite. (If it were finite we could enumerate all states in finite time and

solve the halting problem, which is impossible since the λ-calculus is Tur-

ing complete.) Environments allow the creation of infinite structure because

10 CHAPTER 2. PRELIMINARIES

ς ∈ State = Eval + Apply

Eval = UEval + CEval

UEval = UCall × Env

CEval = CCall × Env

Apply = UApply + CApply

UApply = UProc × UProc × CProc

CApply = CProc × UProc

Proc = UProc + CProc

d ∈ UProc = ULam × Env

c ∈ CProc = (CLam × Env) + {halt}
ρ ∈ Env = Var ⇀ Proc

(a) Domains

A(g , ρ) ,

{
(g , ρ) Lam?(g)

ρ(g) Var ?(g)

[UEA] (J(f e q)lK, ρ)⇒ (A(f, ρ),A(e, ρ),A(q, ρ))

[UAE] (〈J(λl(u k) call)K, ρ〉, d, c)⇒ (call , ρ[u 7→ d, k 7→ c])

[CEA] (J(q e)γK, ρ)⇒ (A(q, ρ),A(e, ρ))

[CAE] (〈J(λγ(u) call)K, ρ〉, d)⇒ (call , ρ[u 7→ d])

(b) Semantics

Figure 2.3: Concrete semantics of Partitioned CPS

they contain closures, which in turn contain other environments. An envi-

ronment chain can contain multiple closures over the same lambda. Some

of these closures must be “muddled together” during flow analysis.

Non-standard semantics Shivers proposed adding a level of indirection

in environments [61]. Binding environments map variables to addresses

and variable environments map variable-address pairs to values. To bind a

variable x to a value v, we allocate a fresh address a, bind x to a in the

binding environment and (x, a) to v in the variable environment.

The non-standard semantics appears in fig. 2.4. The last component of

each state is a time, which is a sequence of call sites. Eval -to-Apply tran-

2.2. THE ELEMENTS OF CONTINUATION-PASSING STYLE 11

ς ∈ State = Eval + Apply

Eval = UEval + CEval

UEval = UCall × BEnv × VEnv × Time

CEval = CCall × BEnv × VEnv × Time

Apply = UApply + CApply

UApply = UProc × UProc × CProc × VEnv × Time

CApply = CProc × UProc × VEnv × Time

Proc = UProc + CProc

d ∈ UProc = ULam × BEnv

c ∈ CProc = (CLam × BEnv) + {halt}
ρ ∈ BEnv = Var ⇀ Time

ve ∈ VEnv = Var × Time ⇀ Proc

t ∈ Time = Lab∗

(a) Domains

A(g , ρ, ve) ,

{
(g , ρ) Lam?(g)

ve(g , ρ(g)) Var ?(g)

[UEA] (J(f e q)lK, ρ, ve, t)→ (A(f, ρ, ve),A(e, ρ, ve),A(q, ρ, ve), ve, l :: t)

[UAE] (〈J(λl(u k) call)K, ρ〉, d, c, ve, t)→ (call , ρ′, ve ′, t)
ρ′ = ρ[u 7→ t, k 7→ t]
ve ′ = ve[(u, t) 7→ d, (k, t) 7→ c]

[CEA] (J(q e)γK, ρ, ve, t)→ (A(q, ρ, ve),A(e, ρ, ve), ve, γ :: t)

[CAE] (〈J(λγ(u) call)K, ρ〉, d, ve, t)→ (call , ρ′, ve ′, t)
ρ′ = ρ[u 7→ t]
ve ′ = ve[(u, t) 7→ d]

(b) Semantics

Figure 2.4: Non-standard concrete semantics of Partitioned CPS

12 CHAPTER 2. PRELIMINARIES

sitions increment the time by recording the label of the corresponding call

site. Apply-to-Eval transitions leave the time unchanged. Thus, the time t of

a state reveals the call sites along the execution path to that state. We use

times as addresses for variable binding. We write t1 < t2 when t1 is a proper

suffix of t2, i.e., when t1 is an earlier time than t2 (v to include equality).

A takes the variable environment ve as an extra argument. To find the

value of a variable x, we look up the time when x was put in the binding

environment ρ and use that to search for the actual value in ve.

The initial state I(pr) is a UApply of the form ((pr , ∅), input , halt , ∅, 〈〉).
The initial time is the empty sequence of call sites. The final state (if any)

is a CApply of the form (halt , d, ve, t), where d is the result of evaluating the

program. Any non-final state that does not have a successor is a stuck state,

e.g., (J(f e q)lK, ∅, ∅, t) where f , e and q are variables.

The non-standard semantics performs flow analysis alongside evaluation.

The analysis results are recorded in the variable environment ve. Every

time a value flows to a variable, i.e., in the Apply-to-Eval transitions, the

semantics records the flow in ve. We can query ve to answer flow-analysis

questions. For example, the following set contains all closures that can flow

to a variable x.

{ ve(x, t) : ∀t.(x, t) ∈ dom(ve)}

In the rest of this dissertation, we do not use the standard concrete se-

mantics; the analyses in chapters 3, 4 and 5 are abstractions of the non-

standard semantics. Thus, for the sake of brevity, when we refer to the

“concrete semantics” without using a qualifier, we mean the non-standard

concrete semantics.

2.2.4 Preliminary lemmas

Most states in State are unreachable when we evaluate a program pr under

the concrete semantics. We are only interested in states that can be realized

when starting from I(pr). In this section, we show some basic properties of

reachable states.

Definition 1. Let S ⊆ Var , ρ, ve satisfy the property Pbind(S, ρ, ve) iff

S ⊆ dom(ρ) and ∀x ∈ dom(ρ). (x, ρ(x)) ∈ dom(ve).

2.2. THE ELEMENTS OF CONTINUATION-PASSING STYLE 13

Definition 1 states that all variables in a set S are bound in ρ and the

variable-time pairs are bound to some closure in ve.

Lemma 2. Let ς be a reachable state of the form (. . . , ve, t). Then,

1. For every (lam, ρ) ∈ range(ve), Pbind(FV (lam), ρ, ve) holds.

2. If ς is an Eval state (call , ρ, ve, t), Pbind(FV (call), ρ, ve) holds.

3. If ς is an Apply and (lam, ρ) is a closure in operator or argument position,

Pbind(FV (lam), ρ, ve) holds.

Lemma 2 states that when we look up a free variable, it is always bound

to some closure; variable lookups never fail. This lemma ensures that reach-

able states do not get stuck. Thus, the evaluation of a program either reaches

a final state or diverges.

Definition 3. For any term g , the map BV (g) returns the variables bound by

g or by lambdas which are subterms of g . It has a simple inductive definition:

BV (J(λψ(x1 . . . xn)call)K) = {x1, . . . , xn} ∪ BV (call)

BV (J(g1 . . . gn)ψK) = BV (g1) ∪ · · · ∪ BV (gn)

BV (x) = ∅

We assume that all variables in a program have distinct names. Thus,

if (λψ(x1 . . . xn)call) is a term in such a program, we know that no other

lambda binds variables with names x1, . . . , xn. (During the analysis, we do

not rename any variables.) The following lemma is a simple consequence of

using unique variable names.

Lemma 4. Let ς be a reachable state of the form (. . . , ve, t). Then,

1. For any closure (lam, ρ) ∈ range(ve), it holds that dom(ρ)∩BV (lam) = ∅.
2. If ς is an Eval state (call , ρ, ve, t), then dom(ρ) ∩ BV (call) = ∅.
3. If ς is an Apply state, any closure (lam, ρ) in operator or argument posi-

tion satisfies dom(ρ) ∩ BV (lam) = ∅.

Every lambda lam appears textually in operator or argument position at

some call site ψ. When the execution reaches an Eval state of the form

(T (ψ), ρ, ve, t), we pair up lam with ρ to create a closure. Let x ∈ FV (lam).

In a well-formed state, we expect that x was entered in ρ before the creation

of the closure, not at some future time (!) In other words, ρ(x) v t should

hold. The next lemma ensures the well-formedness of times.

14 CHAPTER 2. PRELIMINARIES

Definition 5. Let ρ, ve satisfy the property Ptime(ρ, ve) iff for every x ∈
dom(ρ) where ve(x, ρ(x)) = (lam, ρ′) and t ∈ range(ρ′), we know t < ρ(x).

Lemma 6 (Temporal consistency).

Let ς be a reachable state of the form (. . . , ve, t). Then,

1. For every (lam, ρ) ∈ range(ve), Ptime(ρ, ve) holds.

2. If ς is an Eval state (call , ρ, ve, t), Ptime(ρ, ve) holds. Also, for any time t′

in ρ or in ve, t′ v t.

3. If ς is an Apply and (lam, ρ) is a closure in operator or argument position,

Ptime(ρ, ve) holds. Also, for any time t′ in ρ or in ve, t′ < t.

To prove these lemmas, we show that they hold for I(pr) and that every

transition preserves their truth. We include a proof of lemma 4 in appendix

A. The others are similar.

CHAPTER 3

The kCFA analysis

The most well-known flow analysis for languages with first-class functions is

Shivers’s kCFA [60, 61, 62], which is a finite-state analysis. In this chapter,

we use kCFA as the vehicle for understanding how all finite-state analyses

work. We describe the specification of kCFA and how it can be implemented

using a simple workset algorithm. We state the results that establish the

soundness of kCFA (without proof). Last, we discuss the limitations of kCFA

and other finite-state models and identify call/return mismatch as the main

reason for these limitations.

3.1 Introduction to kCFA

This section presents the main ideas of kCFA using examples. The discussion

is informal to get the intuition across, so we overlook the subtle differences

between variants of the analysis (widening: none vs. per state vs. global,

reachability or not, etc.). The next section shows the formal semantics.

kCFA is not a single analysis, but a family of analyses, parameterized over

a natural number k. The parameter k is a bounded representation of the

calling context, like Sharir and Pnueli’s call strings [59]. For k = 0, we get

a monovariant analysis, i.e., invocations of a function from different calling

contexts are not distinguished. For k > 0, the analysis is polyvariant: it

creates contexts of length k that represent the last k function activations and

it distinguishes invocations of a function that happen in different contexts.

Consider the following program, which defines the apply and identity

functions, then binds n1 to 1 and n2 to 2 and adds them. At program point

(+ n1 n2), there is only one possible value for n1 and only one possible

value for n2; we would like a static analysis to be able to find these values.

15

16 CHAPTER 3. THE KCFA ANALYSIS

main()1

app id 1

n1

2

3

app id 2

n2

4

5

ret := n1+n26

main7

app(f e)

8

f e

ret

9

10

app
11

id(x)

12

ret := x13

id14

Figure 3.1: 0CFA control-flow graph

(define app (λ (f e) (f e)))

(define id (λ (x) x))

(let* ((n1 (app id 1))

(n2 (app id 2)))

(+ n1 n2))

0CFA produces the control-flow graph in fig. 3.1. In the graph, the top

level of the program is presented as a function called main. Function entry

and exit nodes are rectangles with sharp corners. Inner nodes are rectangles

with rounded corners. Each call site is represented by a call node and a

corresponding return node, which contains the variable to which the result

of the call is assigned. Each function uses a local variable ret for its return

value. Solid arrows are intraprocedural steps. Dashed arrows go from call

sites to function entries and from function exits to return points. There is no

edge between call and return nodes; a call reaches its corresponding return

only if the callee terminates.

0CFA, like all monovariant analyses, treats interprocedural control flow

(dashed arrows: calls and returns) in the same way as intraprocedural con-

trol flow (solid arrows). It considers all paths in the graph to be valid execu-

tions and it uses a single global environment for variable binding. For these

3.1. INTRODUCTION TO KCFA 17

Address Value Address Value Address Value
n1 1, 2 f id x 1, 2
n2 1, 2 e 1, 2 ret id 1, 2
ret main 2, 3, 4 ret app 1, 2

(a) 0CFA

Address Value Address Value Address Value
n1 1, 2 f〈2〉 id x〈9〉 1, 2
n2 1, 2 e〈2〉 1 ret id〈9〉 1, 2
ret main 2, 3, 4 ret app〈2〉 1, 2

f〈4〉 id

e〈4〉 2
ret app〈4〉 1, 2

(b) 1CFA

Address Value Address Value Address Value
n1 1 f〈2〉 id x〈9, 2〉 1
n2 2 e〈2〉 1 ret id〈9, 2〉 1
ret main 3 ret app〈2〉 1 x〈9, 4〉 2

f〈4〉 id ret id〈9, 4〉 2
e〈4〉 2
ret app〈4〉 2

(c) 2CFA

Table 3.1: kCFA results for the example program

reasons, it cannot distinguish between different calls to the same function.

We can bind n1 to 2 by calling app from 4 and returning to 3. Also, we can

bind n2 to 1 by calling app from 2 and returning to 5. At point (+ n1 n2),

0CFA determines that each variable can be bound to either 1 or 2. Table 3.1a

shows the results of 0CFA.

In section 2.2.3, we mentioned that flow analyses have to approximate

the environment chain in some way. 0CFA approximates all closures over a

lambda lam in the environment chain with a single closure. In fact, it uses a

single closure for all closures over lam that are created during the course of

the analysis, not just for the ones that can be live in the same environment

chain.

We can increase precision by increasing k. For k = 1, the analysis distin-

18 CHAPTER 3. THE KCFA ANALYSIS

guishes calls to a function f that happen at different program points. How-

ever, if f is called from a program point in function g and g is called from

two different places, 1CFA merges these two calls to f . Table 3.1b shows the

results of 1CFA. Note that 1CFA finds that both 1 and 2 flow to n1 and n2,

because it merges the two calls to id.

By increasing k once more, we get the precise result (table 3.1c). Note

that the call strings are of length up to 2, not always 2. For example, if a

function is called from the top level, its call string is 1. Intuitively, for k > 0,

kCFA constructs a graph where each program point appears as many times

as the different call strings for that program point.

3.2 The semantics of kCFA

The kCFA semantics is an abstraction of the semantics of section 2.2.3. We

can get a computable analysis by making Time finite. We fix some number

k and remember only the k most recent labels of a call string. For example,

if k = 2, call strings 〈12, 79, 3, 46〉 and 〈12, 79, 5〉 are both approximated by

〈12, 79〉. As a result, the analysis merges distinct bindings. For a variable x

and functions f1, f2, the bindings

[(x, 〈12, 79, 3, 46〉) 7→ f1]

[(x, 〈12, 79, 5〉) 7→ f2]
are merged to [(x, 〈12, 79〉) 7→ {f1, f2}].

Variables are bound to sets of closures instead of a single closure. Fig. 3.2a

shows the abstract domains of kCFA. Note that the state space is finite.

The transition rules of the abstract semantics appear in fig. 3.2b. They

are similar to the rules of fig. 2.4. The main difference is that the ab-

stract semantics is non-deterministic. In the Êval -to-Âpply transitions (rules

[ÛEA], [ĈEA]), the operator evaluates to a set of closures; we pick one non-

deterministically and jump to it .

Since Time is finite, when we add a binding [(x, t̂) 7→ v̂] to v̂e we do not

know if t̂ is fresh, so we join the new binding with any existing ones. The

join operation t is defined as:

(v̂e t [(x, t̂) 7→ v̂])(y, t̂ ′) ,

v̂e(x, t̂) ∪ v̂ (y, t̂ ′) = (x, t̂)

v̂e(y, t̂ ′) o/w

3.2. THE SEMANTICS OF KCFA 19

ς̂ ∈ Ŝtate = Êval + Âpply

Êval = ÛEval + ĈEval

ÛEval = UCall × B̂Env × V̂Env × T̂ime

ĈEval = CCall × B̂Env × V̂Env × T̂ime

Âpply = ÛApply + ĈApply

ÛApply = ÛProc × ÛVal × ĈVal × V̂Env × T̂ime

ĈApply = ĈProc × ÛVal × V̂Env × T̂ime

ÛProc = ULam × B̂Env

ĈProc = (CLam × B̂Env) + {halt}
v̂ ∈ V̂al = ÛVal + ĈVal

d̂ ∈ ÛVal = Pow(ÛProc)

ĉ ∈ ĈVal = Pow(ĈProc)

ρ̂ ∈ B̂Env = Var ⇀ T̂ime

v̂e ∈ V̂Env = Var × T̂ime ⇀ V̂al

t̂ ∈ T̂ime = Labk

(a) Domains

Â(g , ρ̂, v̂e) ,

{
{(g , ρ̂)} Lam?(g)

v̂e(g , ρ̂(g)) Var ?(g)

[ÛEA] (J(f e q)lK, ρ̂, v̂e, t̂) ; (p̂roc, Â(e, ρ̂, v̂e), Â(q, ρ̂, v̂e), v̂e, dl :: t̂ek)
p̂roc ∈ Â(f, ρ̂, v̂e)

[ÛAE] (〈J(λl(u k) call)K, ρ̂〉, d̂, ĉ, v̂e, t̂) ; (call , ρ̂′, v̂e ′, t̂)
ρ̂′ = ρ̂[u 7→ t̂ , k 7→ t̂]

v̂e ′ = v̂e t [(u, t̂) 7→ d̂, (k, t̂) 7→ ĉ]

[ĈEA] (J(q e)γK, ρ̂, v̂e, t̂) ; (p̂roc, Â(e, ρ̂, v̂e), v̂e, dγ :: t̂ek)
p̂roc ∈ Â(q, ρ̂, v̂e)

[ĈAE] (〈J(λγ(u) call)K, ρ̂〉, d̂, v̂e, t̂) ; (call , ρ̂′, v̂e ′, t̂)
ρ̂′ = ρ̂[u 7→ t̂]

v̂e ′ = v̂e t [(u, t̂) 7→ d̂]

(b) Semantics

Figure 3.2: Abstract semantics of kCFA

20 CHAPTER 3. THE KCFA ANALYSIS

1 Seen ← {Î(pr)}
2 W ← {Î(pr)}
3 while W 6= ∅
4 remove a state ς̂ from W
5 foreach ς̂2 such that ς̂ ; ς̂2
6 if ς̂2 6∈ Seen then

7 insert ς̂2 in Seen and W

Figure 3.3: Workset algorithm for kCFA

When we increment time, its length may exceed k, so we use the d·ek

function to keep only the k most recent labels. The initial state Î(pr) is

((pr , ∅), {input}, {halt}, ∅, 〈〉).

3.2.1 Workset algorithm

Let RS be the set of abstract states that are reachable from Î(pr).

RS = { ς̂ : Î(pr) ;∗ ς̂}

We can visualize RS as a directed graph, whose nodes are abstract states,

and there is an edge from a node ς̂1 to a node ς̂2 iff ς̂1 ; ς̂2. This graph is

the result of the kCFA analysis. Any algorithm for graph reachability, such

as breadth-first search or depth-first search, can compute this graph.

Fig. 3.3 shows a simple workset algorithm that computes the graph. The

exploration pattern is left unspecified; one can make it breadth-first by mak-

ing the workset a queue or depth-first by making it a stack. Ŝtate is finite and

we mark states as seen when we put them in W . Therefore, the algorithm

terminates. Note that even though Êval states non-deterministically transi-

tion to one of their possible successors, the algorithm explores all successors

of a state to ensure soundness. When it finishes, Seen is equal to RS.

3.2.2 Correctness

We show that the abstract semantics of kCFA safely approximates the con-

crete semantics, using the methodology of section 2.1.

The abstraction function |·| maps each concrete state to an abstract state

(fig. 3.4). The first four equations show how to abstract states. The call site

of an Eval stays the same and we apply |·| to ρ, ve and t. Similarly, when

3.2. THE SEMANTICS OF KCFA 21

|(call , ρ, ve, t)| = (call , |ρ|, |ve|, |t|)

|(〈ulam, ρ〉, d, c, ve, t)| = (〈ulam, |ρ|〉, |d|, |c|, |ve|, |t|)

|(〈clam, ρ〉, d, ve, t)| = (〈clam, |ρ|〉, |d|, |ve|, |t|)

|(halt , d, ve, t)| = (halt , |d|, |ve|, |t|)

|(lam, ρ)| = {(lam, |ρ|)}

|halt | = {halt}

|t| = dtek

|ρ| = λ x. |ρ(x)|

|ve| = λ x, t̂.
⋃
|t|=t̂ |ve(x, t)|

Figure 3.4: Abstraction function

(a1, . . . , an) v (b1, . . . , bn) iff ai v bi for 1 6 i 6 n

v̂1 v v̂2 iff v̂1 ⊆ v̂2

ρ̂1 v ρ̂2 iff ρ̂1 = ρ̂2 � dom(ρ̂1)

v̂e1 v v̂e2 iff ∀(x, t̂) ∈ dom(v̂e1). v̂e1(x, t̂) v v̂e2(x, t̂)

Figure 3.5: Ordering relation on abstract states

abstracting an Apply , the lambda of the operator stays the same and we

apply |·| to the environment and the other components of the state.

Closures and halt abstract to singleton sets because abstract values are

sets of closures. Times abstract to call strings of length k. We abstract bind-

ing environments pointwise. To abstract a variable environment, we must

join several bindings together; when we look up the value of (x, t̂) in |ve|,
there may be many times t in ve that abstract to t̂. Therefore, for each such

t, we find the closure ve(x, t), abstract it and include it in the result.

The relation ς̂1 v ς̂2 is a partial order on abstract states and can be read as

“ς̂1 is more precise than ς̂2” (fig. 3.5). Tuples are ordered pointwise. Abstract

22 CHAPTER 3. THE KCFA ANALYSIS

values are ordered by inclusion. A binding environment ρ̂2 is more approxi-

mate than ρ̂1 iff they agree on the domain of ρ̂1 (� is the function-restriction

operator). A variable environment v̂e2 is more approximate than v̂e1 iff for

every binding ((x, t̂), v̂) in v̂e1, v̂e2 has a more approximate binding. The

following examples illustrate the use of v.

halt v halt

J(f e q)lK v J(f e q)lK
{(x, 〈7, 19〉)} v {(x, 〈7, 19〉), (y, 〈3〉)}

{(x, 〈7, 19〉), (y, 〈3〉)} 6v {(x, 〈7, 19〉), (y, 〈3, 5〉)}

We omit the proof of the simulation theorem because the soundness of

kCFA is well known. The interested reader can find a proof in Might’s dis-

sertation [42].

3.3 Limitations of finite-state analyses

kCFA considers every path in the abstract-state graph to be a possible exe-

cution of the program. Thus, executions are strings in a regular language.

However, the execution traces that properly match calls with returns are

strings in a context-free language. Approximating this control flow with

regular-language techniques permits execution paths that break call/return

nesting. Call/return mismatch affects the analysis in several ways.

3.3.1 Imprecise dataflow information

In kCFA, a function may be called from one program point but return to a

different one, which results in spurious flow of data. In section 3.1, we saw

an example for 0CFA. The analysis cannot match the call site and the return

point of app and this causes 2 to flow to n1 and 1 to flow to n2. Similar

examples can be written for any k.

The app/id example is an atypical program, but it illustrates an issue

found in all real-world programs. It is common to have a few functions that

are called from tens or hundreds of program points. If an analysis is not

effective at distinguishing different calling contexts, widely used functions

pollute the analysis results.

3.3. LIMITATIONS OF FINITE-STATE ANALYSES 23

3.3.2 Inability to calculate stack change

Besides the spurious flow of data, call/return mismatch results in spurious

control flow. As a consequence, we cannot accurately calculate stack changes

between program points. The app/id example is a straight-line program,

but according to 0CFA, it has a loop (there is a path from 4 to 3). Recursive

programs make stack-change calculation even harder.

Some optimizations, however, require accurate information about stack

change. For instance,

• Most compound data are heap allocated in the general case. Examples

include: closure environments, cons pairs, records, objects, etc. If we

can show statically that such a piece of data is only passed downward,

we can allocate it on the stack and reduce garbage-collection overhead.

• Often, continuations captured by call/cc do not escape upward. In this

case, we do not need to copy the stack into the heap.

Such optimizations are performed more effectively with pushdown analyses.

3.3.3 Sensitivity to syntax changes

A finite-state analysis approximates the program stack, whose size is un-

bounded, with a finite number of contexts. As a result, seemingly innocent

syntactic transformations that preserve the meaning of a program may con-

fuse the analysis because they “eat up” context.

In the following example, 1CFA can find that each variable can be bound

only to a single number.

(let* ((id (λ (x) x))

(n1 (id 1))

(n2 (id 2)))

(+ n1 n2))

If we η-expand id, 1CFA can no longer find the precise answer.

(let* ((id (λ (y) ((λ (x) x) y)))

(n1 (id 1))

(n2 (id 2)))

(+ n1 n2))

24 CHAPTER 3. THE KCFA ANALYSIS

By η-expanding id repeatedly, we can consume as many call sites as we

want, so for any k we can construct an example that tricks kCFA.

Polymorphic splitting [75], which is a finite-state analysis that creates

a separate context for each occurrence of a let-bound variable, would be

precise in this example. But if we lambda-bind id, polymorphic splitting

merges the results of the two calls.

((λ (id)

(let* ((n1 (id 1))

(n2 (id 2)))

(+ n1 n2)))

(λ (x) x))

3.3.4 The environment problem and fake rebinding

In higher-order languages, many bindings of the same variable can be si-

multaneously live. Determining at compile time whether two references to

some variable will be bound in the same runtime environment is referred to

as the environment problem [61, 42]. Consider the following program:

(let ((f (λ (x thunk)

(if (number? x)

(thunk)

(λ1() x)))))

(f 0 (f "foo" "bar ")))

In the inner call to f, x is bound to "foo" and λ1 is returned. We call f again;

this time, x is 0, so we jump through (thunk) to λ1, and reference x, which,

despite the just-completed test, is not a number: it is the string "foo".

Thus, during static analysis, it is generally unsafe to assume that a refer-

ence has some property just because an earlier reference had that property.

This has an unfortunate consequence: when two references are bound in the

same environment, kCFA does not detect it, and it allows paths in which the

references are bound to different abstract values. We call this phenomenon

fake rebinding.

(define (compose -same f x) (f (f x)))

3.3. LIMITATIONS OF FINITE-STATE ANALYSES 25

Imprecision Spurious flows
to be analyzed

Flow data along
spurious flows

Figure 3.6: The vicious cycle of approximation

In compose-same, both references to f are always bound in the same envi-

ronment (the top stack frame). However, if multiple closures flow to f, kCFA

may call one closure at the inner call site and a different closure at the outer

call site.

3.3.5 Polyvariant versions of kCFA are intractable

kCFA for k > 0 is an expensive analysis, both in theory [70] and in practice

[64]. Counterintuitively, imprecision in higher-order flow analyses can in-

crease their running time: imprecision induces spurious paths, along which

the analysis must flow data, thus creating further spurious paths, and so on,

in a vicious cycle which creates extra work whose only function is to degrade

precision [75] (fig. 3.6).

With 20 years of hindsight, we can now say that imprecision in kCFA

happens because call strings are not a good abstraction of calling context.

With a good abstraction, a function usually behaves differently in different
contexts, so redundancy is minimized. With call strings, each program point

potentially appears in a large number of contexts and the analysis results for

many of them are the same [40]. Researchers have proposed BDDs as a way

to tame redundancy [76, 74]. We believe it is better to use an abstraction

that avoids introducing redundancy in the first place.

26 CHAPTER 3. THE KCFA ANALYSIS

3.3.6 The root cause: call/return mismatch

A close look at the shortcomings of kCFA reveals that most of them are

caused by call/return mismatch. Specifically,

• Call/return mismatch causes spurious data flows, which lower precision.

• Call/return mismatch causes spurious control flows, which hinder effec-

tive reasoning about stack change.

• Call/return mismatch causes syntactic brittleness.

• Imprecision induced by call/return mismatch creates extra work that

slows down the analysis.

Only fake rebinding is not directly caused by call/return mismatch; it hap-

pens because kCFA does not solve the environment problem. In the next

chapter, we show that CFA2 uses a single mechanism, a stack, for call/re-

turn matching and to avoid most fake rebinding.

Since kCFA, there has been a lot of subsequent work devoted to finding

good abstractions of context (e.g., [49, 75, 44, 43, 65]). These analyses

provided insights on the different kinds of contexts and improved the state

of the art of higher-order flow analysis. However, being finite-state, they all

experience the limitations of call/return mismatch.

CHAPTER 4

The CFA2 analysis

This chapter presents CFA2, a higher-order flow analysis with unbounded

call/return matching. The key insight is that instead of a finite-state ma-

chine, we can abstract a higher-order program to a pushdown automaton

(or equivalent). By pushing return points on the stack, we always return

to the right place. The name CFA2 stands for “a Context-Free Approach to

Control-Flow Analysis.”1

Like kCFA, CFA2 is an abstract interpretation of programs in CPS. We use

a variant of CPS that forbids first-class control (sec. 4.1.3). First-class control

presents special challenges for call/return matching, which we address in

chapter 5.

The abstract semantics uses two environments for variable binding, a

stack and a heap (sec. 4.2). Variable references are looked up in one or the

other, depending on where they appear in the source code. Most references

in typical programs are read from the stack, which results in significant pre-

cision gains. Also, CFA2 can filter certain bindings off the stack to sharpen

precision (sec. 4.5).

Each abstract state has a stack of unbounded height. Hence, the abstract

state space is infinite. To analyze it, we create an algorithm based on sum-

marization, a dynamic-programming technique used by several pushdown-

reachability analyses (sec. 4.3).

1The acronym is inspired by “ACL2: A Computational Logic for Applicative Common
Lisp” [33]. We use “context-free” with its usual meaning from formal language theory, to
indicate that CFA2 approximates valid executions as strings in a context-free language. Un-
fortunately, “context-free” means something else in program analysis. To avoid confusion,
we use “monovariant” and “polyvariant” when we refer to the abstraction of calling con-
text in program analysis. CFA2 is polyvariant (aka context sensitive), because it analyzes
different calls to the same function in different environments.

27

28 CHAPTER 4. THE CFA2 ANALYSIS

4.1 Setting up the analysis

4.1.1 The Orbit stack policy

Our end goal is to obtain an abstraction of the concrete semantics that uses

a stack to match calls and returns. To achieve this goal, we need to see how

to manage the stack in a CPS setting, i.e., when to push and pop.

The Orbit compiler [39, 38] compiles a CPS intermediate representation

to final code that uses a stack. The abstract semantics of CFA2 follows Orbit’s

stack policy.2 The main idea behind Orbit’s policy is that we can manage the
stack for a CPS program in the same way that we would manage it for the
original direct-style program:

• For every call to a user function, we push a frame for the arguments.

• We pop a frame at function returns. In CPS, user functions “return” by

calling the current continuation with a return value. This happens at

CCall call sites whose operator is a variable.

• We also pop a frame at tail calls. A UCall call site is a tail call in CPS

iff it was a tail call in the original direct-style program. In tail calls, the

continuation argument is a variable.

4.1.2 Stack/heap split

The purpose of the stack in CFA2 is twofold: we use it for return point

information and as an environment for variable binding. We split references

into two categories: stack and heap references. In direct style, if a reference

appears at the same nesting level as its binder, then it is a stack reference,

otherwise it is a heap reference. For example, the program

(λ1(x) (λ2(y) (x (x y))))

has a stack reference to y and two heap references to x.

Intuitively, only heap references may be captured in a heap-allocated

closure. When we call a user function, we push a frame for its arguments, so
2 Steele’s Rabbit compiler for Scheme compiles CPS to final code that does not use a

stack [67]. Steele’s view is that argument evaluation pushes stack and function calls are
GOTOs. Since arguments in CPS are not calls, argument evaluation is trivial and Rabbit
never needs to push stack. By this approach, every call in CPS is a tail call. SML/NJ
also uses this strategy [4]. CFA2 computes safe flow information, which can be used in
compilers that follow Rabbit’s stack policy. The workings of the abstract interpretation are
independent of what style an implementor chooses for the final code.

4.1. SETTING UP THE ANALYSIS 29

we know that stack references are always bound in the top frame. We look

up stack references in the top frame, and heap references in the heap. Stack

lookups below the top frame never happen.

When a program p is CPS-converted to a program p′, stack (resp. heap)

references in p remain stack (resp. heap) references in p′. All references

added by the transformation are stack references.

We can give an equivalent definition of stack and heap references directly

in CPS, without referring to the original direct-style program. Labels can be

split into disjoint sets according to the innermost user lambda that contains

them. For the CPS translation of the previous program,

(λ1(x k1)

(k1 (λ2(y k2)

(x y (λ3(u) (x u k2)4))5))6)

these sets are {1, 6} and {2, 3, 4, 5}. The “label to label” map LL(ψ) returns

the labels that are in the same set as ψ, e.g., LL(4) = {2, 3, 4, 5} and LL(6) =

{1, 6}. The “label to variable” map LV (ψ) returns all variables bound by

any lambdas that belong in the same set as ψ, e.g., LV (4) = {y, k2, u} and

LV (6) = {x, k1}. Notice that, for any ψ, LV (ψ) contains exactly one con-

tinuation variable. Using LV, we give the following definition of stack and

heap references.

Definition 7 (Stack and heap references).

• Let ψ be a call site that refers to a variable x. The predicate S?(ψ, x)

holds iff x ∈ LV (ψ). We call x a stack reference.

• Let ψ be a call site that refers to a variable x. The predicate H?(ψ, x)

holds iff x /∈ LV (ψ). We call x a heap reference.

• x is a stack variable, written S?(x), iff all its references satisfy S?.

• x is a heap variable, written H?(x), iff some of its references satisfy H?.

For instance, S?(5, y) holds because y ∈ {y, k2, u} and H?(5, x) holds because

x /∈ {y, k2, u}.
Continuations close over the stack, e.g., the stack variable k2 appears

free in λ3. Our stack policy must ensure that continuations can access the

variables in their environment (see sec. 4.2).

30 CHAPTER 4. THE CFA2 ANALYSIS

ς̂ ∈ ÛEval = UCall × Stack × Heap

ς̂ ∈ ÛApply = ULam × ÛProc × ĈProc × Stack × Heap

ς̂ ∈ ĈEval = CCall × Stack × Heap

ς̂ ∈ ĈApply = ĈProc × ÛProc × Stack × Heap

d̂ ∈ ÛProc = Pow(ULam)

ĉ ∈ ĈProc = CLam + {halt}
fr , tf ∈ Frame = Var ⇀ (ÛProc + ĈProc)

st ∈ Stack = Frame∗

h ∈ Heap = UVar ⇀ ÛProc

Figure 4.1: Domains

• When passing a continuation to a user function, we ensure that its envi-

ronment is at the top of the stack.

• Before calling a continuation, we ensure that its environment is at the

top of the stack.

4.1.3 Ruling out first-class control syntactically

Programs that use call/cc or similar constructs can perform actions that

break call/return nesting, like jumping to a function that has already re-

turned. First-class control complicates reasoning about the stack.

Without first-class control, functions only use their current continuation.

This behavior is syntactically apparent in CPS; we can see it by observing

the CPS translation of a few direct-style programs that do not use first-class

control. In the example of the previous section, λ2 only uses the continuation

that is passed to it, which is k2. Thus, we can impose a simple syntactic

constraint on CPS terms to rule out first-class control [15, 56]. We use the

name CPS /1 for this variant of CPS.

Definition 8 (CPS /1). A program is in CPS /1 iff the only continuation vari-

able that can appear free in the body of a user lambda (λl(u k) call) is k.

4.2 The semantics of CFA2

Like kCFA, the CFA2 semantics is an abstraction of the semantics of section

2.2.3. The abstract domains appear in fig. 4.1. An abstract user procedure

4.2. THE SEMANTICS OF CFA2 31

pop(tf :: st) , st

push(fr , st) , fr :: st

(tf :: st)(x) , tf (x)

(tf :: st)[u 7→ d̂] , tf [u 7→ d̂] :: st

(a) Stack operations

Âu(e, ψ, st , h) ,


{e} Lam?(e)

st(e) S?(ψ, e)

h(e) H?(ψ, e)

Âk(q, st) ,

{
q Lam?(q)

st(q) Var ?(q)

[ÛEA] (J(f e q)lK, st , h) ; (ulam, Âu(e, l, st , h), Âk(q, st), st
′, h)

ulam ∈ Âu(f, l, st , h)

st ′ =

{
pop(st) Var ?(q)

st Lam?(q)

[ÛAE] (J(λl(u k) call)K, d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂, k 7→ ĉ], st)

h ′ =

{
h t [u 7→ d̂] H?(u)

h S?(u)

[ĈEA] (J(q e)γK, st , h) ; (Âk(q, st), Âu(e, γ, st , h), st ′, h)

st ′ =

{
pop(st) Var ?(q)

st Lam?(q)

[ĈAE] (J(λγ(u) call)K, d̂, st , h) ; (call , st ′, h ′)

st ′ = st [u 7→ d̂]

h ′ =

{
h t [u 7→ d̂] H?(u)

h S?(u)

(b) Semantics

Figure 4.2: Abstract semantics of CFA2

32 CHAPTER 4. THE CFA2 ANALYSIS

(member of the set ÛProc) is a set of user lambdas. An abstract continua-

tion procedure (member of ĈProc) is either a continuation lambda or halt .

A frame is a partial map from program variables to abstract values. A frame

always maps user variables to user values and continuation variables to con-

tinuation values. A stack is a sequence of frames. All stack operations ex-

cept push are defined for non-empty stacks only (fig. 4.2a). A heap is a map

from variables to abstract values. It contains only user bindings because, in

CPS /1, every continuation variable is a stack variable.

Fig. 4.2b shows the transition rules. The initial state Î(pr) is a ÛApply

of the form (pr , {input}, halt , 〈〉, ∅). We evaluate user terms using Âu and

continuation terms using Âk. Suppose a user variable u is referenced at call

site ψ. We look up its value in the stack when S?(ψ, u) and in the heap

otherwise. Note that even if u is a heap variable, we use the precise stack

lookups for its stack references.

On transition from a ÛEval state ς̂ to a ÛApply state ς̂ ′ (rule [ÛEA]), we

first evaluate f , e and q. We non-deterministically choose one of the lambdas

that flow to f as the operator in ς̂ ′. The change to the stack depends on q.

If q is a variable, the call is a tail call so we pop the stack. If q is a lambda,

it evaluates to a new closure whose environment is the top frame, hence we

do not pop the stack.

In the ÛApply-to-Êval transition (rule [ÛAE]), we push a frame for the

procedure’s arguments. In addition, if u is a heap variable we must update

its binding in the heap. The join operation t is defined as:

(h t [u 7→ d̂])(x) ,

h(x) x 6= u

h(x) ∪ d̂ x = u

In a ĈEval -to-ĈApply transition (rule [ĈEA]), we are preparing for a call

to a continuation closure, so we must bring its environment to the top of

the stack. When q is a variable, the ĈEval state is a function return and

the continuation’s environment is the second stack frame, so we pop. When

q is a lambda, it is a newly created closure, so the stack does not change.

Unlike [ÛEA], this transition is deterministic. Since we always know which

continuation we are about to call, call/return mismatch never happens.

In the ĈApply-to-Êval transition (rule [ĈAE]), the top frame is the en-

vironment of (λγ(u) call); stack references in call need this frame on the

top of the stack. Hence, we do not push; we extend the top frame with the

4.2. THE SEMANTICS OF CFA2 33

binding for the continuation’s parameter u. If u is a heap variable, we also

update the heap.3

Examples When the analyzed program is not recursive, the stack size is

bounded so we can enumerate all abstract states without diverging. Let’s

see how the analysis works on a simple program that applies the identity

function twice and returns the result of the second call. The initial state

Î(pr) is a ÛApply .

(J(λ(i h)(i 1 (λ1(n1)(i 2 (λ2(n2)(h n2))))))K, {J(λ3(x k)(k x))K}, halt , 〈〉, ∅)

All variables in this example are stack variables, so the heap will be empty

throughout the execution. In frames, we abbreviate lambda expressions by

labeled lambdas. By rule [ÛAE], we push a frame for i and h and transition

to a ÛEval state.

(J(i 1 (λ1(n1)(i 2 (λ2(n2)(h n2)))))K, 〈[i 7→ {λ3}, h 7→ halt]〉, ∅)

We look up i in the top frame. Since the continuation argument is a lambda,

we do not pop the stack. The next state is a ÛApply .

(J(λ3(x k)(k x))K, {1}, λ1, 〈[i 7→ {λ3}, h 7→ halt]〉, ∅)

We push a frame for the arguments of λ3 and jump to its body.

(J(k x)K, 〈[x 7→ {1}, k 7→ λ1], [i 7→ {λ3}, h 7→ halt]〉, ∅)

This is a ĈEval state where the operator is a variable, so we pop a frame.

(J(λ1(n1)(i 2 (λ2(n2)(h n2))))K, {1}, 〈[i 7→ {λ3}, h 7→ halt]〉, ∅)

We extend the top frame to bind n1 and jump to the body of λ1.

(J(i 2 (λ2(n2)(h n2)))K, 〈[n1 7→ {1}, i 7→ {λ3}, h 7→ halt]〉, ∅)

The new call to i is also not a tail call, so we do not pop.

(J(λ3(x k)(k x))K, {2}, λ2, 〈[n1 7→ {1}, i 7→ {λ3}, h 7→ halt]〉, ∅)

We push a frame and jump to the body of λ3.

(J(k x)K, 〈[x 7→ {2}, k 7→ λ2], [n1 7→ {1}, i 7→ {λ3}, h 7→ halt]〉, ∅)
3All temporaries created by the CPS transformation are stack variables; but a compiler

optimization may rewrite a program to create heap references to temporaries.

34 CHAPTER 4. THE CFA2 ANALYSIS

We pop a frame and jump to λ2.

(J(λ2(n2)(h n2))K, {2}, 〈[n1 7→ {1}, i 7→ {λ3}, h 7→ halt]〉, ∅)

We extend the top frame to bind n2 and jump to the body of λ2.

(J(h n2)K, 〈[n2 7→ {2}, n1 7→ {1}, i 7→ {λ3}, h 7→ halt]〉, ∅)

The operator is a variable, so we pop the stack. The next state is a final state,

so the program terminates with value {2}.

(halt , {2}, 〈〉, ∅)

CFA2 is more resilient to η-expansion than kCFA (cf. sec. 3.3.3). If we η-

expand λ3 to (λ3(x k)((λ4(y k2)(k2 y)) x k)), CFA2 still finds the pre-

cise answer because the change did not create any heap references. Also,

CFA2 is not affected by λ-binding the identity, unlike polymorphic splitting.

However, if we change λ3 to (λ3(x k)((λ4(y k2)(k2 x)) x k)), then both

1 and 2 flow to the heap reference to x and CFA2 will return {1, 2}.

4.2.1 Correctness

We show that the abstract semantics of CFA2 simulates the concrete seman-

tics, using the methodology of section 2.1. Fig. 4.3 shows the abstraction

function |·|ca, which maps concrete to abstract states. It is more involved

than the one for kCFA because abstract states have a stack, so we must ex-

pose stack-related information hidden in ρ and ve of concrete states.

The abstraction of an Eval state ς of the form (call , ρ, ve, t) is an Êval

state ς̂ with the same call site. We use the function toStack to find the

stack of ς̂. Let L(call) be ψ and iuλ(call) be λl. To reach ψ, control passed

by a ÛApply state ς̂ ′ over λl. According to our stack policy, the top frame

contains bindings for the formals of λl and any temporaries added along

the path from ς̂ ′ to ς̂ (see rule [ĈAE]). Therefore, the domain of the top

frame is a subset of LV (l), i.e., a subset of LV (ψ). For each user variable

ui ∈ (LV (ψ) ∩ dom(ρ)), the top frame contains [ui 7→ |ve(ui, ρ(ui))|ca]. Let k

be the sole continuation variable in LV (ψ). If ve(k, ρ(k)) is halt (the return

continuation is the top-level continuation), the rest of the stack is empty. If

ve(k, ρ(k)) is (clam, ρ′), the second frame is for the user lambda in which

(clam, ρ′) was born, and so forth: proceeding through the stack, we add a

frame for each live activation of a user lambda until we reach halt .

4.2. THE SEMANTICS OF CFA2 35

|(call , ρ, ve, t)|ca = (call , toStack(LV (L(call)), ρ, ve), |ve|ca)

|(〈ulam, ρ〉, d, c, ve, t)|ca = (ulam, |d|ca, |c|ca, st , |ve|ca)

where st =

{
〈〉 c = halt

toStack(LV (L(clam)), ρ′, ve) c = (clam, ρ′)

|(〈clam, ρ〉, d, ve, t)|ca = (clam, |d|ca, toStack(LV (L(clam)), ρ, ve), |ve|ca)

|(halt , d, ve, t)|ca = (halt , |d|ca, 〈〉, |ve|ca)

|(ulam, ρ)|ca = {ulam}

|(clam, ρ)|ca = clam

|halt |ca = halt

|ve|ca = { (u,
⋃

(u,t)∈dom(ve) |ve(u, t)|ca) : H?(u)}

toStack({u1, . . . , un, k}, ρ, ve) ,〈[ui 7→ d̂i][k 7→ halt]〉 halt = ve(k, ρ(k))

[ui 7→ d̂i][k 7→clam] :: toStack(LV (L(clam)), ρ′, ve) (clam, ρ′) = ve(k, ρ(k))

where d̂i = |ve(ui, ρ(ui))|ca

Figure 4.3: From concrete to abstract states

The abstraction of a UApply state over 〈ulam, ρ〉 is a ÛApply state ς̂ whose

operator is ulam. The stack of ς̂ is the stack in which the continuation argu-

ment was created, and we compute it using toStack as above. Abstracting a

CApply is similar to the UApply case, only now the top frame is the environ-

ment of the continuation operator.

The abstraction maps drop the time of the concrete states, since the ab-

stract states do not use times. Unlike kCFA, the abstraction of a continuation

closure is the corresponding lambda. When abstracting a variable environ-

ment ve, we only keep heap variables.

The ordering relation on abstract states (fig. 4.4) is similar to that of

kCFA. Note that st1 v st2 implies that st1 and st2 have the same length.

We can now state the simulation theorem for CFA2. The proof proceeds

by case analysis on the concrete transition relation. It can be found in ap-

pendix A.

36 CHAPTER 4. THE CFA2 ANALYSIS

〈a1, . . . , an〉 v 〈b1, . . . , bn〉 iff ai v bi for 1 6 i 6 n

d̂1 v d̂2 iff d̂1 ⊆ d̂2

h1 v h2 iff ∀x ∈ dom(h1). h1(x) v h2(x)

tf 1 :: st1 v tf 2 :: st2 iff tf 1 v tf 2 ∧ st1 v st2

tf 1 v tf 2 iff ∀x ∈ dom(tf 1). tf 1(x) v tf 2(x)

Figure 4.4: Ordering relation on abstract states

Theorem 9 (Simulation). If ς → ς ′ and |ς|ca v ς̂, then there exists ς̂ ′ such

that ς̂ ; ς̂ ′ and |ς ′|ca v ς̂ ′.

4.2.2 The abstract semantics as a pushdown system

Let RS be the set of abstract states that are reachable from Î(pr). Since

the size of the stack is not bounded, RS can be infinite. Thus, the abstract

semantics of CFA2 does not correspond to a finite-state machine. CFA2 ap-

proximates higher-order programs as pushdown systems.
A pushdown system (PDS) is similar to a pushdown automaton, except

it does not read input from a tape [21, 57]. Formally,

Definition (Pushdown System). A pushdown system P is a triple (P,Γ,∆).

P is a finite set of control locations. Γ is a finite stack alphabet. A state of P
is a pair of a control location p ∈ P and a stack w ∈ Γ∗. ∆ is a finite subset

of (P × Γ) × (P × Γ∗). It contains rules of the form (p, γ) ↪→ (p′, w), which

define a transition relationV between states:

If (p, γ) ↪→ (p′, w) then (p, γw′)V (p′, ww′) for all w′ ∈ Γ∗

A transition may change the control location and replace the topmost stack

symbol with a (possibly empty) string of stack symbols. The rest of the stack

does not change and cannot influence the transition.

There is a natural connection between the CFA2 semantics and PDSs:

a) Stack is the only infinite domain.

b) Frames below the top frame cannot influence a transition.

4.3. EXPLORING THE INFINITE STATE SPACE 37

ÛEval (non-tail call) (J(f e clam)lK, tf :: st , h) ; (ulam, d̂, ĉ, tf :: st , h)

Push (J(f e clam)lK, h, tf) ↪→ (d̂, ĉ, h, 〈ulam, tf 〉)

ÛEval (tail call) (J(f e k)lK, tf :: st , h) ; (ulam, d̂, ĉ, st , h)

(J(f e k)lK, h, tf) ↪→ (d̂, ĉ, h, 〈ulam〉)

ĈEval (J(clam e)γK, tf :: st , h) ; (clam, d̂, tf :: st , h)

(J(clam e)γK, h, tf) ↪→ (clam, d̂, h, 〈tf 〉)

ĈEval (function exit) (J(k e)γK, tf :: st , h) ; (clam, d̂, st , h)

Pop (J(k e)γK, h, tf) ↪→ (clam, d̂, h, 〈〉)

ÛApply (ulam, d̂, ĉ, st , h) ; (call , tf :: st , h ′)

(d̂, ĉ, h, ulam) ↪→ (call , h ′, 〈tf 〉)

ĈApply (clam, d̂, tf :: st , h) ; (call , tf ′ :: st , h ′)

(clam, d̂, h, tf) ↪→ (call , h ′, 〈tf ′〉)

Figure 4.5: CFA2 as a pushdown system

We show the correspondence in fig. 4.5. Each abstract state ς̂ is a state (p, w)

of a PDS P and each abstract transition gives rise to a rule in ∆. The stack

st of ς̂ becomes w and the other components of ς̂ become p. (To illustrate

this, we reorder the components in the PDS rules and put the stack last.)

We make one tweak for ÛApply states. Î(pr) is a ÛApply and has an empty

stack, but the left side of a PDS rule always has one stack symbol. Thus, we

put the operator of a ÛApply in the stack to match the PDS-rule format.

The set of reachable states RS of a PDS P may be infinite because Γ∗

is infinite. Therefore, we cannot enumerate all states in RS. However, RS
is regular [21]. Pushdown-reachability algorithms explore RS by using a

dynamic-programming technique called summarization, which we describe

in the next section.

4.3 Exploring the infinite state space

We use summarization to explore the state space in CFA2. Our algorithm

is based on Sharir and Pnueli’s functional approach [59, pg. 207], adapted

to the terminology of Reps et al. [52]. These algorithms require that we

know all call sites of a function. Therefore, they do not apply directly to

38 CHAPTER 4. THE CFA2 ANALYSIS

main()1

app id 1

n1

2

3

app id 2

n2

4

5

ret := n1+n26

main7

app(f e)

8

f e

ret

9

10

app
11

id(x)

12

ret := x13

id14

(a) Control-flow graph

main()1

app id 1

n1

2

3

app id 2

n2

4

5

ret := n1+n26

main7

app(f e)

8

f e

ret

9

10

app
11

id(x)

12

ret := x13

id14

(b) Path and call edges

Figure 4.6: Summarization for app/id

higher-order languages, because we cannot find all call sites of a function

by looking at a program’s source code. We need a search-based variant of

summarization, which records callers as it discovers them.

4.3.1 Overview of summarization

We start with an informal overview of summarization. Assume that a pro-

gram is executing and control reaches the entry of a procedure f . We start

computing inside the procedure. While doing so, we are visiting several pro-

gram points inside f and possibly calling (and returning from) other pro-

cedures. Sometime later, we reach the exit and are about to return to the

caller with a result. The intuition behind summarization is that, during this

computation, the return point of f was irrelevant; it influences reachability

only after we return to the caller. Consequently, if from a program point n

with an empty stack we can reach a point n′ with stack s′, then from n with

stack s we can reach n′ with stack s′s.

Let’s return to the app/id example and use summarization to find which

nodes of the graph are reachable from node 1. Fig. 4.6a shows the control-

flow graph. We find reachable nodes by recording path edges, i.e., edges

whose source is the entry of a procedure and whose target is some reachable

program point in the same procedure. Path edges should not be confused

with the edges already present in the graph. They are artificial edges used

by the analysis to represent intraprocedural paths, hence the name.

Node 1 goes to 2, so we record the edges 〈1, 1〉 and 〈1, 2〉. From 2 we call

4.3. EXPLORING THE INFINITE STATE SPACE 39

app, so we record the call 〈2, 8〉 and jump to 8. In app, we find path edges

〈8, 8〉 and 〈8, 9〉. We find a new call 〈9, 12〉 and jump to 12. Inside id, we

discover the edges 〈12, 12〉, 〈12, 13〉 and 〈12, 14〉. Edges that go from an entry

to an exit, such as 〈12, 14〉, are called summary edges. We have not been

keeping track of the stack, so we use the recorded calls to find the return

point. The only call to id is 〈9, 12〉, so 14 returns to 10 and we find a new

edge 〈8, 10〉, which leads to 〈8, 11〉. We record 〈8, 11〉 as a summary also.

From the call 〈2, 8〉, we see that 11 returns to 3, so we record edges 〈1, 3〉
and 〈1, 4〉. Now, we have a new call 〈4, 8〉 to app. Reachability inside app

does not depend on its calling context. From the summary 〈8, 11〉, we know

that 4 can reach 5, so we find 〈1, 5〉. Subsequently, we find the last two path

edges, which are 〈1, 6〉 and 〈1, 7〉. Fig. 4.6b shows all path and call edges.

During the search, we did two kinds of transitions. The first kind includes

intraprocedural steps and calls; these transitions do not shrink the stack. The

second is function returns, which shrink the stack. Since the stack is not an

explicit part of the model, we find the target nodes of the second kind of

transitions in an indirect way, by recording calls and summaries. We show a

summarization-based algorithm for CFA2 in section 4.3.3. The next section

describes the local semantics, which we use in the algorithm for transitions

that do not shrink the stack.

4.3.2 Local semantics

Summarization-based algorithms operate on a finite set of program points.

Since the abstract state space is infinite, we cannot use abstract states as

program points. For this reason, we introduce local states and define a map

|·|al from abstract to local states (fig. 4.7). Intuitively, a local state is like an

abstract state but with a single frame instead of a stack. Discarding the rest

of the stack makes the local state space finite; keeping the top frame allows

precise lookups for stack references.

The local semantics describes executions that do not touch the rest of

the stack, in other words, executions where functions do not return. Thus,

a C̃Eval state with call site (k e)γ has no successor in this semantics. Since

functions do not call their continuations, the frames of local states contain

only user bindings. Local steps are otherwise similar to abstract steps. The

metavariable ς̃ ranges over local states. We define the map |·|cl from concrete

40 CHAPTER 4. THE CFA2 ANALYSIS

Ẽval = Call × S̃tack × Heap

ŨApply = ULam × ÛProc × Heap

C̃Apply = ĈProc × ÛProc × S̃tack × Heap

F̃rame = UVar ⇀ ÛProc

S̃tack = F̃rame

(a) Domains

|(call , st , h)|al = (call , |st |al, h)

|(ulam, d̂, ĉ, st , h)|al = (ulam, d̂, h)

|(ĉ, d̂, st , h)|al = (ĉ, d̂, |st |al, h)

|st |al =

{
∅ st = 〈〉
tf � UVar st = tf :: st ′

(b) From abstract to local states

Ãu(e, ψ, tf , h) ,


{e} Lam?(e)

tf (e) S?(ψ, e)

h(e) H?(ψ, e)

[ŨEA] (J(f e q)lK, tf , h) ≈> (ulam, Ãu(e, l, tf , h), h)

ulam ∈ Ãu(f, l, tf , h)

[ŨAE] (J(λl(u k) call)K, d̂, h) ≈> (call , [u 7→ d̂], h ′)

h ′ =

{
h t [u 7→ d̂] H?(u)

h S?(u)

[C̃EA] (J(clam e)γK, tf , h) ≈> (clam, Ãu(e, γ, tf , h), tf , h)

[C̃AE] (J(λγ(u) call)K, d̂, tf , h) ≈> (call , tf ′, h ′)

tf ′ = tf [u 7→ d̂]

h ′ =

{
h t [u 7→ d̂] H?(u)

h S?(u)

(c) Semantics

Figure 4.7: Local semantics of CFA2

4.3. EXPLORING THE INFINITE STATE SPACE 41

to local states to be |·|al ◦ |·|ca.
Summarization distinguishes between different kinds of states: entries,

exits, calls, returns and inner states. CPS lends itself naturally to such a

categorization. The following definition works for all three state spaces:

concrete, abstract and local.

Definition 10 (Classification of states).

• A UApply state is an Entry—control is at the beginning of a function.

• A CEval state where the operator is a variable is an Exit-Ret—a function

is about to return a result to its context.

• A CEval state where the operator is a lambda is an Inner state.

• A UEval state is an Exit-TC when the continuation argument is a variable—

at tail calls control does not return to the caller.

• A UEval state is a Call when the continuation argument is a lambda.

• A CApply state is a Return if its predecessor is an Exit-Ret, or an In-

ner state if its predecessor is also an inner state. Our algorithm does

not distinguish between the two kinds of CApplys; the difference is just

conceptual.

The next example shows that tail calls require generalizing the notion of

summary edges. Consider the app/id program written in CPS.

((λ (app id k)

(app id 1 (λ1(n1) (app id 2 (λ2(n2) (+ n1 n2 k))))))

(λ (f e k) (f e k))

(λ (x k) (k x))

halt)

The call (f e k) in the body of app is a tail call, so no continuation is born

there. Upon return from the first call to id, we must be careful to pass the

result to λ1. Also, we must restore the environment of the first call to app,

not the environment of the tail call. Similarly, the second call to id must

return to λ2 and restore the correct environment. We achieve these with a

“cross-procedure” summary from the entry of app to call site (k x), which is

the exit of id. This transitive nature of summaries is essential for tail calls.

42 CHAPTER 4. THE CFA2 ANALYSIS

4.3.3 Workset algorithm

The algorithm for CFA2 is shown in fig. 4.8. It is a search-based summariza-

tion for higher-order programs with tail calls. Its goal is to compute which

local states are reachable from the initial state of a program through paths

that respect call/return matching.

Structure of the algorithm The algorithm uses a workset W, which con-

tains path edges and summaries to be examined. An edge (ς̃1, ς̃2) is an or-

dered pair of local states. We call ς̃1 the source and ς̃2 the target of the edge.

At every iteration, we remove an edge from W and process it, potentially

adding new edges in W. We stop when W is empty.

An edge (ς̃1, ς̃2) is a summary when ς̃1 is an entry and ς̃2 is an Exit-Ret,

not necessarily in the same procedure (due to tail calls). Summaries carry

an important message: each continuation passed to ς̃1 can flow to the operator
position of ς̃2.

The algorithm maintains several sets. The results of the analysis are

stored in the set Seen. It contains path edges (from a procedure entry to

a state in the same procedure) and summary edges. The target of an edge

in Seen is reachable from the source and from the initial state. Summaries

are also stored in Summary . Final records final states, i.e., C̃Applys that

call halt with a return value for the whole program. Callers contains triples

〈ς̃1, ς̃2, ς̃3〉, where ς̃1 is an entry, ς̃2 is a call in the same procedure and ς̃3 is the

entry of the callee. TCallers contains triples 〈ς̃1, ς̃2, ς̃3〉, where ς̃1 is an entry,

ς̃2 is a tail call in the same procedure and ς̃3 is the entry of the callee. The

initial state Ĩ(pr) is defined as |I(pr)|cl. The helper function succ(ς̃) returns

the successor(s) of ς̃ according to the local semantics.

Edge processing Each edge (ς̃1, ς̃2) is processed in one of four ways, de-

pending on ς̃2. If ς̃2 is an entry, a return or an inner state (line 6), then its

successor ς̃3 is a state in the same procedure. Since ς̃2 is reachable from ς̃1, ς̃3
is also reachable from ς̃1. If we have not already recorded the edge (ς̃1, ς̃3),

we do it now (line 27).

If ς̃2 is a call (line 8) then ς̃3 is the entry of the callee, so we propagate

(ς̃3, ς̃3) instead of (ς̃1, ς̃3) (line 10). Also, we record the call in Callers. If

an exit ς̃4 is reachable from ς̃3, it should return to the continuation born at

ς̃2 (line 12). The function Update is responsible for computing the return

4.3. EXPLORING THE INFINITE STATE SPACE 43

1 Summary , Callers, TCallers, Final ← ∅
2 Seen, W ← {(Ĩ(pr), Ĩ(pr))}
3 while W 6= ∅
4 remove (ς̃1,ς̃2) from W
5 switch ς̃2
6 case ς̃2 of Entry , CApply , Inner -CEval

7 for the ς̃3 in succ(ς̃2), Propagate(ς̃1,ς̃3)
8 case ς̃2 of Call

9 foreach ς̃3 in succ(ς̃2)
10 Propagate(ς̃3,ς̃3)
11 insert (ς̃1,ς̃2,ς̃3) in Callers
12 foreach (ς̃3,ς̃4) in Summary , Update(ς̃1,ς̃2,ς̃4)
13 case ς̃2 of Exit -Ret

14 if ς̃1 = Ĩ(pr) then

15 Final(ς̃2)
16 else

17 insert (ς̃1,ς̃2) in Summary
18 foreach (ς̃3,ς̃4,ς̃1) in Callers, Update(ς̃3,ς̃4,ς̃2)
19 foreach (ς̃3,ς̃4,ς̃1) in TCallers, Propagate(ς̃3,ς̃2)
20 case ς̃2 of Exit -TC

21 foreach ς̃3 in succ(ς̃2)
22 Propagate(ς̃3,ς̃3)
23 insert (ς̃1,ς̃2,ς̃3) in TCallers
24 foreach (ς̃3,ς̃4) in Summary , Propagate(ς̃1,ς̃4)
25

26 Propagate(ς̃1, ς̃2) ,
27 if (ς̃1,ς̃2) 6∈ Seen then insert (ς̃1,ς̃2) in Seen and W
28

29 Update(ς̃1, ς̃2, ς̃3) ,
30 ς̃2 of the form (J(f e clam)lK, tf 2, h2)
31 ς̃3 of the form (J(k e3)

γK, tf 3, h3)

32 d̂← Ãu(e3, γ, tf 3, h3)

33 ς̃ ← (clam, d̂, tf 2, h3)
34 Propagate(ς̃1,ς̃)
35

36 Final(ς̃) ,
37 ς̃ of the form (J(k e)γK, tf , h)

38 insert (halt , Ãu(e, γ, tf , h), ∅, h) in Final

Figure 4.8: Workset algorithm

44 CHAPTER 4. THE CFA2 ANALYSIS

state. We find the return value d̂ by evaluating the expression e3 passed to

the continuation (lines 31 – 32). Since we are returning to clam, we must

restore the environment of its creation which is tf 2. The new state ς̃ is the

corresponding return of ς̃2, so we propagate (ς̃1, ς̃) (lines 33 – 34).

If ς̃2 is an Exit-Ret and ς̃1 is the initial state (lines 14 – 15), then ς̃2’s

successor is a final state (lines 37 – 38). If ς̃1 is some other entry, we record

the edge in Summary and pass the result of ς̃2 to the callers of ς̃1 (lines 17 –

18). Last, consider the case of a tail call ς̃4 to ς̃1 (line 19). No continuation

is born at ς̃4. Thus, we must find where ς̃3 (the entry that led to the tail call)

was called from. Then again, all calls to ς̃3 may be tail calls, in which case

we keep searching further back in the call chain to find a return point. We

do the backward search by transitively adding a cross-procedure summary

from ς̃3 to ς̃2 (line 19).

If ς̃2 is a tail call (line 20), we find its successors and record the call in

TCallers (lines 21 – 23). If a successor of ς̃2 goes to an exit, we propagate a

cross-procedure summary transitively (line 24). Table 4.1 shows a complete

run of the algorithm for a small program.

4.3.4 Correctness

The local state space is finite, so there are finitely many path and summary

edges. We record edges as seen when we insert them in W, which ensures

that no edge is inserted in W twice. Therefore, the algorithm terminates.

We obviously cannot visit an infinite number of abstract states. To estab-

lish soundness, we show that for each state ς̂ ∈ RS, the algorithm visits |ς̂|al
(theorem 13). In essence, the algorithm visits the reachable control states of

a PDS (see sec. 4.2.2).

Does it also visit other states, which result in spurious flows that do not

happen in the abstract semantics? For example, a sound but useless algo-

rithm would add all pairs of local states in Seen. We establish the complete-

ness of CFA2 by proving that every visited edge corresponds to an abstract

flow (theorem 14), which means that there is no loss in precision when go-

ing from abstract to local states.

The theorems use two definitions. The first associates a state ς̂ with its

corresponding entry, i.e., the entry of the procedure that contains ς̂. The

second finds all entries that reach CE p(ς̂) through tail calls. We include the

4.3. EXPLORING THE INFINITE STATE SPACE 45

Name Kind Value

Ĩ(pr) Entry (J(λ2(id h)(id 1 (λ3(u)(id 2 h))))K, {J(λ1(x k)(k x))K}, ∅)

ς̃1 Call (J(id 1 (λ3(u)(id 2 h)))K, [id 7→ {λ1}], ∅)

ς̃2 Entry (λ1, {1}, ∅)

ς̃3 Exit-Ret (J(k x)K, [x 7→ {1}], ∅)

ς̃4 C̃Apply (λ3, {1}, [id 7→ {λ1}], ∅)

ς̃5 Exit-TC (J(id 2 h)K, [id 7→ {λ1}, u 7→ {1}], ∅)

ς̃6 Entry (λ1, {2}, ∅)

ς̃7 Exit-Ret (J(k x)K, [x 7→ {2}], ∅)

ς̃8 C̃Apply (halt , {2}, ∅, ∅)

W Summary Callers TCallers Final

(Ĩ(pr), Ĩ(pr)) ∅ ∅ ∅ ∅

(Ĩ(pr), ς̃1) ∅ ∅ ∅ ∅

(ς̃2, ς̃2) ∅ (Ĩ(pr), ς̃1, ς̃2) ∅ ∅

(ς̃2, ς̃3) ∅ (Ĩ(pr), ς̃1, ς̃2) ∅ ∅

(Ĩ(pr), ς̃4) (ς̃2, ς̃3) (Ĩ(pr), ς̃1, ς̃2) ∅ ∅

(Ĩ(pr), ς̃5) (ς̃2, ς̃3) (Ĩ(pr), ς̃1, ς̃2) ∅ ∅

(ς̃6, ς̃6) (ς̃2, ς̃3) (Ĩ(pr), ς̃1, ς̃2) (Ĩ(pr), ς̃5, ς̃6) ∅

(ς̃6, ς̃7) (ς̃2, ς̃3) (Ĩ(pr), ς̃1, ς̃2) (Ĩ(pr), ς̃5, ς̃6) ∅

(Ĩ(pr), ς̃7) (ς̃2, ς̃3), (ς̃6, ς̃7) (Ĩ(pr), ς̃1, ς̃2) (Ĩ(pr), ς̃5, ς̃6) ∅

∅ (ς̃2, ς̃3), (ς̃6, ς̃7) (Ĩ(pr), ς̃1, ς̃2) (Ĩ(pr), ς̃5, ς̃6) ς̃8

Table 4.1: A complete run of CFA2. Note that λ1 is applied twice and returns
to the correct context both times. The program evaluates to 2. For brevity,
we first show all reachable states and then refer to them by their names.
Ĩ(pr) shows the whole program; in the other states we abbreviate lambdas
by their labels. All heaps are ∅ because there are no heap variables. The
rows of the table show the contents of the sets at line 3 for each iteration.
Seen contains all pairs entered in W.

46 CHAPTER 4. THE CFA2 ANALYSIS

proofs of the theorems in appendix A.

Definition 11. The Corresponding Entry CE p(ς̂) of a state ς̂ in a path p is:

• ς̂, if ς̂ is an Entry

• ς̂1, if ς̂ is not an Entry, p = p1 ; ς̂1 ;
∗ ς̂2 ; ς̂ ; p2, ς̂2 is not an Exit-Ret,

and CE p(ς̂2) = ς̂1

• ς̂1, if ς̂ is not an Entry, p = p1 ; ς̂1 ;+ ς̂2 ; ς̂3 ;+ ς̂4 ; ς̂ ; p2, ς̂2 is a

Call and ς̂4 is an Exit-Ret, CE p(ς̂2) = ς̂1, and ς̂3 ∈ CE ∗p(ς̂4)

Definition 12. For state ς̂ and path p, CE ∗p(ς̂) is the smallest set such that:

• CE p(ς̂) ∈ CE ∗p(ς̂)

• CE ∗p(ς̂1) ⊆ CE ∗p(ς̂), when p = p1 ; ς̂1 ; ς̂2 ;
∗ ς̂ ; p2, ς̂1 is a Tail Call, ς̂2

is an Entry, and ς̂2 = CE p(ς̂)

Theorem 13 (Soundness). Let p = Î(pr) ;∗ ς̂. Then, after summarization:

• if ς̂ is not a final state then (|CE p(ς̂)|al, |ς̂|al) ∈ Seen

• if ς̂ is a final state then |ς̂|al ∈ Final

• if ς̂ is an Exit-Ret and ς̂ ′ ∈ CE ∗p(ς̂) then (|ς̂ ′|al, |ς̂|al) ∈ Seen

Theorem 14 (Completeness). After summarization:

• For each (ς̃1, ς̃2) in Seen, there exist states ς̂1, ς̂2 ∈ RS such that ς̂1 ;∗ ς̂2

and ς̃1 = |ς̂1|al and ς̃2 = |ς̂2|al and ς̂1 ∈ CE ∗p(ς̂2)

• For each ς̃ in Final , there exists a final state ς̂ ∈ RS such that ς̃ = |ς̂|al

4.4 Without heap variables, CFA2 is exact

Joining of abstract values introduces imprecision in a flow analysis. In CFA2,

we join only when we insert a value in the heap. Therefore, CFA2 is exact

for programs without heap variables.

We refer to the set of programs with stack variables only as the stack
λ-calculus, λS. Note that λS includes non-terminating programs such as

((λ (x) (x x)) (λ (x) (x x)))

The workset algorithm finds in finite time that this program does not termi-

nate; halt is never applied, so when the algorithm ends, Final is empty. Let

T1 be the term (λ (x) (x x)). The evaluation of (T1 T1) has a finite number

of states because the iteration happens in tail position.

4.5. STACK FILTERING 47

(T1 T1)→ (T1 T1)→ (T1 T1)→ . . .

The stack λ-calculus also includes programs whose evaluation has in-

finitely many states. Let T2 be the term (λ (x) (x (x x))). The call-by-

value evaluation of (T2 T2) is

(T2 T2)→ (T2 (T2 T2))→ (T2 (T2 (T2 T2)))→ . . .

CFA2 still finds that this program does not terminate.

Using the CFA2 workset algorithm, every λS program can be converted

to an equivalent PDS P. Since there is no joining of abstract values, every

ŨEval state has a single successor, so P is deterministic. It is an open ques-

tion whether every deterministic PDS can be converted to an equivalent λS
program.

For the ordinary λ-calculus with single-argument functions, λS is rather

restrictive. However, in the λ-calculus with multi-argument functions, λS
contains interesting terms such as Church booleans and boolean connectives,

e.g., TRUE is (λ (x y) x), AND is (λ (x y) (x y x)).4 Naturally, the Y

combinator is not in λS.

(λ (f) ((λ (x) (f (λ (y) ((x x) y))))

(λ (x) (f (λ (y) ((x x) y))))))

Y recurs by passing around closures over (λ (x) (f (λ (y) ((x x) y)))).

Heap references are essential for unrestricted computation.

4.5 Stack filtering

When a flow analysis cannot see that two references of a variable are bound

in the same environment, fake rebinding may occur (sec. 3.3.4). In CFA2,

we can use the stack/heap distinction to prevent fake rebinding for a large

class of variable references.

All stack references of a variable are bound in the same environment, the

top stack frame, so they must all be bound to the same value. We can adapt

rule [ÛEA] in the abstract semantics to achieve that.

4Here, we mean the generalized λ-calculus where a multi-argument function cannot
be partially applied, so it is not just syntactic sugar for the curried version in the ordinary
λ-calculus.

48 CHAPTER 4. THE CFA2 ANALYSIS

(J(f e q)lK, st , h) ; (ulam, Âu(e, l, st , h), Âk(q, st), st
′, h)

ulam ∈ Âu(f, l, st , h)

st ′ =


pop(st) Var ?(q)

st Lam?(q) ∧ (H?(l, f) ∨ Lam?(f))

st [f 7→ {ulam}] Lam?(q) ∧ S?(l, f)

Let’s say control reaches a user call site (f e q)l whose operator is a stack

reference. We pick a lambda ulam and call it. If control reaches other stack

references of f after we return from ulam, they must be bound to ulam,

otherwise there is a spurious flow. Thus, we commit to ulam by removing all

other values from the set st(f).

We cannot change rule [ŨEA] of the local semantics because ŨApply

states do not have stacks. Instead, we filter when a callee returns to its

caller. We add the entry of the callee as an extra argument to Update, before

the Exit-Ret. The call at line 12 becomes Update(ς̃1,ς̃2,ς̃3,ς̃4) and the call at

line 18 becomes Update(ς̃3,ς̃4,ς̃1,ς̃2). The code of Update is

Update(ς̃1, ς̃2, ς̃3, ς̃4) ,

ς̃2 of the form (J(f e clam)lK, tf 2, h2)

ς̃4 of the form (J(k e4)
γK, tf 4, h4)

d̂← Ãu(e4, γ, tf 4, h4)

tf ←

tf 2[f 7→ {π1(ς̃3)}] S?(l, f)

tf 2 H?(l, f) ∨ Lam?(f)

ς̃ ← (clam, d̂, tf , h4)

Propagate(ς̃1,ς̃)

We check if the operator f at the call site is a stack reference. If so, we filter

the frame of the return state to keep only the lambda that was called.

4.6 Complexity

A simple calculation shows that the CFA2 workset algorithm is in EXPTIME.

The size of the domain of Heap is n and the size of the range is 2n, so there

are 2n
2 heaps. Since local states contain heaps, there are exponentially many

local states. Thus, Seen contains exponentially many edges. The running

time of the algorithm is bounded by the number of edges in W times the cost

of each iteration. W contains edges from Seen only, so its size is exponential

4.6. COMPLEXITY 49

(let* ((merger (λ1(f) (λ2(_) f)))

(_ (merger (λ3(x) x)))

(twolams ((merger (λ4(y) y)) _))

(f1 twolams)

(_ (f1 _)1)

(f2 twolams)

(_ (f2 _)2)
...

(fn twolams)

(_ (fn _)n))

_)

Figure 4.9

in n. Therefore, the algorithm requires exponential time. In appendix B, we

show that the algorithm runs in time O(n829n2+3n).

What kinds of programs trigger the exponential behavior? One possibility

is to create exponentially many frames by exploiting the stack-filtering mech-

anism. Consider the program of fig. 4.9, suggested to us by Danny Dubé. The

code is in direct style for brevity; the let-bound variables would be bound

by continuation lambdas in the equivalent CPS program. The only heap

reference appears in the body of λ2. We use underscores for unimportant

expressions.

The merger takes a function, binds f to it and returns a closure that

ignores its argument and returns f. We call the merger twice so that f is

bound to {λ3, λ4} in the heap. After the second call, twolams is bound to

{λ3, λ4} in the top frame. We bind f1 to {λ3, λ4}. At call site 1, execution

splits in two branches. One calls λ3 and filters the binding of f1 in the top

frame to {λ3}. The other calls λ4 and filters the binding to {λ4}. Each branch

will split into two more branches at call 2, etc. By binding each fi to a set

of two elements and applying it immediately, we force a strong update and

create exponentially many frames.

Even in the semantics without stack filtering, we can create an exponen-

tial number of frames (fig. 4.10). This time, we take advantage of the fact

that ÛEval states can have many successors that are analyzed independently.

Again, we bind twolams to a set of two lambdas: λ3 ignores its argument and

returns "foo" and λ4 ignores its argument and returns "bar". Before the call

50 CHAPTER 4. THE CFA2 ANALYSIS

(let* ((merger (λ1(f) (λ2(_) f)))

(_ (merger (λ3(_) "foo ")))

(twolams ((merger (λ4(_) "bar ")) _))

(x1 (twolams _)1)

(x2 (twolams _)2)
...

(xn (twolams _)n))

_)

Figure 4.10

at call site 1, the variables x1, . . . , xn are not bound in the top frame. The

call has two successor ÛApply states, for λ3 and λ4. So, one branch of the

execution will bind x1 to "foo" in the top frame and the other one to "bar".

At call 2, each branch will split in two more branches, etc. The analysis will

branch 2n times and each path will bind x1, . . . , xn to a different combina-

tion of "foo" and "bar".

This example shows that CFA2 is in the category of path-sensitive analy-

ses, because it uses different environments on different execution paths. As

an aside, if we run 0CFA on this program using a variable environment per
state, instead of a single global variable environment, it also needs exponen-

tial time (in contrast to 0CFA with a single global environment, which is a

cubic analysis).

4.6.1 Towards a PTIME algorithm

We tried to keep the algorithm of fig. 4.8 simple because it is meant to be a

model. Several widening techniques can speed up convergence at the cost

of lowering precision.

Instead of having one heap per state, we can use Shivers’s timestamp

technique [61, ch. 5]. We maintain a global heap and a global counter.

Every time the heap changes, we increase the counter. The heap component

of each state is now a timestamp, which shows the value of the counter when

the state was created. Thus, comparing the heap components of states takes

constant time. Heap is a lattice of height O(n2). Since the global heap grows

monotonically, it can change at most O(n2) times during the analysis.

In the semantics without stack filtering, we can bound the number of

4.6. COMPLEXITY 51

frames by widening. The program of fig. 4.10 creates an exponential number

of states for the program point (xn (twolams)n), each with a different

frame. If instead we join the results after every call to twolams, we have

a single frame [x1 7→ {λ3, λ4}, . . . , xn 7→ {λ3, λ4}]. For example, assume

that we want to propagate an edge (ς̃1, ς̃2), where ς̃2 is a ŨEval of the form

(J(f e q)lK, tf , h). We search Seen for a pair (ς̃1, (J(f e q)lK, tf ′, h ′)). (Note

that tf ′ and h ′ can be ⊥ if it is the first time that we reach (f e q)l from

ς̃1.) Then, we propagate (ς̃1, (J(f e q)lK, tf t tf ′, h t h ′)). This way, ς̃2 grows

monotonically. Also, S̃tack is a lattice of height O(n2). Therefore, ς̃1 can

reach at most O(n4) states over call site (f e q)l.

By widening the target states of path edges, we ensure that each entry

can reach a polynomial number of states. Thus, to make the state space (and

the running time) polynomial, it suffices to bound the number of entries by

a polynomial, which can also be achieved by widening.

CHAPTER 5

CFA2 for first-class control

Algorithms based on summarization, including the one in chapter 4, require

that calls and returns in the analyzed program nest properly. However, many

control constructs, some of them in mainstream programming languages,

break call/return nesting. Generators (e.g., in Python and JavaScript) are

functions usually called inside loops to produce a sequence of values one at

a time. A generator executes until it reaches a yield statement, at which

point it returns the value passed to yield to its calling context. When the

generator is called again, execution resumes at the first instruction after the

yield. Coroutines (e.g., in Simula67 [13] and Lua) can also suspend and

resume their execution, but are more expressive than generators because

they can specify where to pass control when they yield. First-class continua-
tions reify the rest of the computation as a value. Undelimited continuations

(call/cc in Scheme and SML/NJ [4]) capture the entire stack. Delimited

continuations [20, 14], found in Scala [54] and some Schemes, capture part

of the stack. Continuations can express generators and coroutines, as well

as multi-threading [71, 63] and Prolog-style backtracking.

All these operators provide a rich variety of control behaviors. In this

chapter, we generalize CFA2 to languages with such operators. We first de-

fine a variant of CPS that permits first-class control, unlike CPS /1 (sec. 5.1).

Then, we present the abstract semantics for this new variant (sec. 5.2). The

semantics detects continuations that may escape and copies the stack into

the heap. For brevity, the semantics does not use stack filtering; it is easy

to add using the ideas of sec. 4.5. In section 5.3, we generalize summariza-

tion to handle escaping continuations with a new kind of summary edge.

Section 5.4 shows how to increase precision for continuations that are only

used downward.

53

54 CHAPTER 5. CFA2 FOR FIRST-CLASS CONTROL

Note For a language with exceptions but no first-class control, the material

in this chapter is not necessary. In chapter 6, we show that exceptions can

be modeled precisely by incorporating them in summaries.

5.1 Restricted CPS

To handle first-class control in CFA2, we must allow capture of continuation

variables in user closures. Thus, we must abandon CPS /1. However, we do

not need general CPS. We propose a variant which is restrictive enough to

permit effective reasoning about calls and returns, but permissive enough

to express the same control operators as general CPS. We call this variant

Restricted CPS (RCPS).

Definition 15 (Restricted CPS). A program is in Restricted CPS iff a contin-

uation variable can appear free in a user lambda in operator position only.

In RCPS, continuations escape in a well-behaved way: after a continua-
tion escapes, it can only be called; it cannot be passed as an argument again.

For example, the CPS-translation of call/cc,

(λ (f cc) (f (λ (v k) (cc v)) cc))

is a valid RCPS term. Terms such as

(λ (x k) (k (λ (y k2) (y 123 k))))

are not valid. We can easily transform the previous term (and any CPS term)

to a valid RCPS term by η-expanding to bring the free reference into operator

position:

(λ (x k) (k (λ (y k2) (y 123 (λ (u) (k u))))))

These two very similar terms highlight the effect of RCPS on stack behav-

ior. In the first case, when execution reaches (y 123 k), we must restore the

environment of the continuation that flows to k, which may cause arbitrary

change to the stack. In the second case, a new continuation is born at call

site (y 123 (λ (u) (k u))), so no stack change is required. Thus, RCPS

forces all exotic stack change to happen when calling an escaping continua-

tion, not in user call sites.

5.2. ABSTRACT SEMANTICS 55

5.2 Abstract semantics

This section describes how to change the CFA2 semantics to make it work for

RCPS. Remember that continuations close over the stack (sec. 4.1.2). Hence,

when a continuation ĉ escapes, we need to save the stack and restore it when

ĉ gets called. We do that by copying the stack into the heap.

Fig. 5.1a shows the domains. They are the same as before (see fig. 4.1),

except that the heap can also contain continuation bindings. Fig. 5.1b shows

the transition rules. First-class control shows up in rules [ÛAE] and [ĈEA];

the other two rules are unchanged.

Upon entering the body of a user function (rule [ÛAE]), we push a new

frame that binds the formals to the arguments, as before. If k is a heap

variable, the continuation that flows to k may escape and later get called.

Thus, we copy the continuation closure into the heap (the code point ĉ but

also the environment st).

Before calling a continuation, we must restore its environment on the

stack (rule [ĈEA]). If q is a heap reference, we are calling a continuation

that may have escaped.1 The stack change since the continuation capture

can be arbitrary. We non-deterministically pick a pair (ĉ, st ′) from h(q), jump

to ĉ and restore st ′, which contains bindings for the stack references in ĉ.

Example Let’s see how the abstract semantics works on a program with

call/cc. Consider the program

(call/cc (λ (c) (somefun (c 42))))

where somefun is an arbitrary function. We use call/cc to capture the top-

level continuation and bind it to c. Then, somefun will never be called,

because (c 42) will return to the top level with 42 as the result.

The CPS translation of call/cc is

(λ1(f cc) (f (λ2(x k2) (cc x)) cc))

The CPS translation of its argument is

(λ3(c k) (c 42 (λ4(u) (somefunCPS u k))))

The initial state (λ1, {λ3}, halt , 〈〉, ∅) is a ÛApply . (We abbreviate lambda

1 We know that q was captured in a user closure, but we are not tracking whether
the closure has been passed upward, so the continuation may still be on the stack. We
pessimistically assume that it has escaped. More on that in section 5.4.

56 CHAPTER 5. CFA2 FOR FIRST-CLASS CONTROL

ς̂ ∈ Êval = Call × Stack × Heap

ς̂ ∈ ÛApply = ULam × ÛProc × ĈProc × Stack × Heap

ς̂ ∈ ĈApply = ĈProc × ÛProc × Stack × Heap

d̂ ∈ ÛProc = Pow(ULam)

ĉ ∈ ĈProc = CLam + {halt}
fr , tf ∈ Frame = Var ⇀ (ÛProc + ĈProc)

st ∈ Stack = Frame∗

h ∈ Heap = Var ⇀ (ÛProc + Pow(ĈProc × Stack))

(a) Domains

Âu(e, ψ, st , h) ,


{e} Lam?(e)

st(e) S?(ψ, e)

h(e) H?(ψ, e)

[ÛEA] (J(f e q)lK, st , h) ; (ulam, Âu(e, l, st , h), ĉ, st ′, h)

ulam ∈ Âu(f, l, st , h)

(ĉ, st ′) =

{
(q, st) Lam?(q)

(st(q), pop(st)) Var ?(q)

[ÛAE] (J(λl(u k) call)K, d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂, k 7→ ĉ], st)

h ′(x) =


h(u) ∪ d̂ (x = u) ∧ H?(u)

h(k) ∪ {(ĉ, st)} (x = k) ∧ H?(k)

h(x) o/w

[ĈEA] (J(q e)γK, st , h) ; (ĉ, Âu(e, γ, st , h), st ′, h)

(ĉ, st ′) ∈


{(q, st)} Lam?(q)

{(st(q), pop(st))} S?(γ, q)

h(q) H?(γ, q)

[ĈAE] (J(λγ(u) call)K, d̂, st , h) ; (call , st ′, h ′)

st ′ = st [u 7→ d̂]

h ′(x) =

{
h(u) ∪ d̂ (x = u) ∧ H?(u)

h(x) o/w

(b) Semantics

Figure 5.1: Abstract semantics of CFA2 with first-class control

5.2. ABSTRACT SEMANTICS 57

expressions by labeled lambdas.) We push a frame and jump to the body of

λ1. Since cc is a heap variable, we save the continuation and the stack in

the heap, producing a heap h with a single element [cc 7→ {(halt , 〈〉)}], and

ÛEval state

(J(f λ2 cc)K, 〈[f 7→ {λ3}, cc 7→ halt]〉, h).

λ2 is essentially a continuation reified as a user value. We tail call to λ3, so

we pop the stack, producing ÛApply state

(λ3, {λ2}, halt , 〈〉, h).

We next push a frame and jump to the body of λ3:

(J(c 42 λ4)K, 〈[c 7→ {λ2}, k 7→ halt]〉, h).

This is a non-tail call, so we do not pop:

(λ2, {42}, λ4, 〈[c 7→ {λ2}, k 7→ halt]〉, h).

We push a frame and jump to the body of λ2:

(J(cc x)K, 〈[x 7→ {42}, k2 7→ λ4], [c 7→ {λ2}, k 7→ halt]〉, h).

As cc is a heap reference, we ignore the current continuation and stack and

restore (halt , 〈〉) from the heap:

(halt , {42}, 〈〉, h).

The program terminates with value {42}.

5.2.1 Correctness

To show that the abstract semantics for RCPS simulates the concrete seman-

tics, we take the same steps as before.

The abstraction map |·|ca is almost the same as the one from section

4.2.1. The only difference is when abstracting a variable environment ve

to a heap h, because now we also keep the heap continuation variables.

Each continuation variable k in ve is bound to a set of continuation-stack

pairs in h. For each closure that can flow to k, we create a pair with the

lambda of that closure and the corresponding stack.

58 CHAPTER 5. CFA2 FOR FIRST-CLASS CONTROL

|ve|ca = { (u,
⋃

(u,t)∈dom(ve) |ve(u, t)|ca) : (u ∈ UVar) ∧ H?(u)} ∪
{ (k,

⋃
(k,t)∈dom(ve) makecs(ve(k, t), ve)) : (k ∈ CVar) ∧ H?(k)}

makecs(c, ve) ,

(halt , 〈〉) c = halt

(clam, toStack(LV (L(clam)), ρ, ve)) c = 〈clam, ρ〉

We also extend the ordering relation v to handle the continuation-stack

pairs in the heap.

h1(k) v h2(k) iff ∀ p1∈h1(k). ∃ p2∈h2(k). p1 v p2

Note that h1(k) need not be a subset of h2(k); we only require that for each

pair in h1(k) there is a more approximate pair in h2(k).

These are the only changes needed for |·|ca and v. The proof of the

simulation theorem is included in appendix A.

5.3 Summarization for first-class control

Pushdown-reachability algorithms work on transition systems whose stack is

unbounded, but the rest of the components are bounded. These algorithms

get around the infinite state space by using summaries to weave calls and

returns together. Due to escaping continuations, we also have to deal with

infinitely many heaps. In this section, we show how to generalize summa-

rization to do so.

Perhaps surprisingly, even though continuations can escape to the heap

in the abstract semantics, we do not need continuations in the heaps of local

states. Thus, we use the local semantics from section 4.3.2 unchanged. The

abstraction function |·|al drops the continuations from the abstract heaps.

|h|al = h � UVar

Definition 10 gives a syntactic classification of states, which is used by

the summarization algorithm. A CEval state where the operator is a heap

reference is different from an Exit-Ret because we make a non-local jump.

We call such a state an Exit-Esc and treat it specially in the algorithm.

5.3. SUMMARIZATION FOR FIRST-CLASS CONTROL 59

5.3.1 Workset algorithm

The algorithm is shown in fig. 5.2. We maintain two sets related to first-

class continuations. If the continuation parameter of a user lambda is a

heap variable, entries over that lambda are stored in EntriesEsc. Escapes

contains Exit-Esc states.

Propagate takes an extra argument which, if true, causes the propagated

edge to be inserted in Summary (lines 44 – 45). Final is the same as before

so we omit it. Update is also unchanged, except the call to Propagate, which

needs an extra argument (line 50).

Summaries for first-class continuations We handle escaping continua-

tions using summaries. Consider the example from section 5.2. When con-

trol reaches (cc x), we want to find which continuation flows to cc. We

know that def λ(cc) is λ1. By looking at the single ÛApply over λ1, we find

that halt flows to cc. This suggests that, for escaping continuations, we need

summaries of the form (ς̃1, ς̃2) where ς̃2 is an Exit-Esc over a call site (k e)γ

and ς̃1 is an entry over def λ(k).

Not all edges whose target is an Exit-Esc are summaries. The general form

of a user lambda that binds a heap continuation variable is

(λ1(u k) (...(λ2(u2 k2) (...(k e)...))...))

where λ1 contains a user lambda λ2, which in turn contains a heap reference

to k in operator position. To reach (k e), the algorithm must go through

an entry over λ2. The path edge from that entry to the Exit-Esc state over

(k e) should not be treated as a summary because we do not want the

continuation that flows to k2 to flow to k.

So, when the algorithm pulls an edge (ς̃1, ς̃2) from W where ς̃2 is an Exit-

Esc, it must have a way to know whether to treat it as a summary or not.

Let (k e)γ be the call site in ς̃2. The first solution that comes to mind is to

consider (ς̃1, ς̃2) a summary iff ς̃1 is an entry over def λ(k). However, this will

not work. Consider a tail call to a lambda whose continuation parameter is

a heap variable.

(define f (λ1(u1 k1) ((λ2(u2 k2) (k1 u2)) u1 k1)))

((λ3(u3 k3) (f u3 k3)) 123 halt)

60 CHAPTER 5. CFA2 FOR FIRST-CLASS CONTROL

1 Summary , Callers, TCallers, EntriesEsc, Escapes, Final ← ∅
2 Seen, W ← {(Ĩ(pr), Ĩ(pr))}
3 while W 6= ∅
4 remove (ς̃1, ς̃2) from W
5 switch ς̃2
6 case ς̃2 of Entry

7 for the ς̃3 in succ(ς̃2), Propagate(ς̃1,ς̃3,false)

8 ς̃2 of the form (J(λl(u k) call)K, d̂, h)
9 if H?(k) then

10 insert ς̃2 in EntriesEsc
11 foreach ς̃3 in Escapes that calls k, Propagate(ς̃2,ς̃3,true)
12 case ς̃2 of CApply , Inner -CEval

13 for the ς̃3 in succ(ς̃2), Propagate(ς̃1,ς̃3,false)
14 case ς̃2 of Call

15 foreach ς̃3 in succ(ς̃2)
16 Propagate(ς̃3,ς̃3,false)
17 insert (ς̃1,ς̃2,ς̃3) in Callers
18 foreach (ς̃3,ς̃4) in Summary , Update(ς̃1,ς̃2,ς̃4)
19 case ς̃2 of Exit -Ret

20 if ς̃1 = Ĩ(pr) then Final(ς̃2)
21 else

22 insert (ς̃1,ς̃2) in Summary
23 foreach (ς̃3,ς̃4,ς̃1) in Callers, Update(ς̃3,ς̃4,ς̃2)
24 foreach (ς̃3,ς̃4,ς̃1) in TCallers, Propagate(ς̃3,ς̃2,false)
25 case ς̃2 of Exit -Esc

26 if (ς̃1,ς̃2) not in Summary then

27 insert ς̃2 in Escapes
28 ς̃2 of the form (J(k e)γK, tf , h)
29 foreach ς̃3 in EntriesEsc over def λ(k), Propagate(ς̃3,ς̃2,true)

30 else if ς̃1 = Ĩ(pr) then Final(ς̃2)
31 else

32 foreach (ς̃3,ς̃4,ς̃1) in Callers, Update(ς̃3,ς̃4,ς̃2)
33 foreach (ς̃3,ς̃4,ς̃1) in TCallers, Propagate(ς̃3,ς̃2,true)
34 case ς̃2 of Exit -TC

35 foreach ς̃3 in succ(ς̃2)
36 Propagate(ς̃3,ς̃3,false)
37 insert (ς̃1,ς̃2,ς̃3) in TCallers
38 S ← ∅
39 foreach (ς̃3,ς̃4) in Summary
40 insert (ς̃1,ς̃4) in S

41 Propagate(ς̃1,ς̃4,false)
42 Summary ← Summary ∪ S

43

44 Propagate(ς̃1, ς̃2, esc) ,
45 if esc then insert (ς̃1,ς̃2) in Summary
46 if (ς̃1,ς̃2) not in Seen then insert (ς̃1,ς̃2) in Seen and W
47

48 Update(ς̃1, ς̃2, ς̃3) ,
49 . . .
50 Propagate(ς̃1,ς̃,false)

Figure 5.2: Workset algorithm

5.3. SUMMARIZATION FOR FIRST-CLASS CONTROL 61

Here, we tail call λ1 at call site (f u3 k3). The algorithm will create a

transitive summary from an entry over λ3 to an Exit-Esc over (k1 u2) in

order to make halt get called at (k1 u2). We want this edge to be a summary

even though its source is not an entry over def λ(k1), which is λ1.

We maintain an invariant for edges to Exit-Esc states: when the algorithm

pulls such an edge out of W , the edge is treated as a summary only if it is in

the Summary set at that time.

Edge processing Each edge (ς̃1, ς̃2) is processed in one of six ways, depend-

ing on ς̃2. The treatment for returns, inner states (line 12), calls (line 14)

and Exit-Ret states (line 19) is the same as before.

Let ς̃2 be an Exit-Esc over a call site (k e)γ (line 25). Its predecessor ς̃ ′ is

an entry or a C̃Apply . To reach ς̃2, the algorithm must go through ς̃ ′. Hence,

the first time the algorithm sees ς̃2 is at line 7 or 13, which means that ς̃1
is an entry over iuλ(J(k e)γK) and (ς̃1, ς̃2) is not in Summary . Thus, the test

at line 26 is true. We record ς̃2 in Escapes. We also create summaries from

entries over def λ(k) to ς̃2, in order to find which continuations can flow to k.

We make sure to put these summaries in Summary (line 29), so that when

they are examined, the test at line 26 is false.

When ς̃2 is examined again, this time (ς̃1, ς̃2) is in Summary . If ς̃1 is the ini-

tial state, ς̃2 can call halt and transition to a final state (line 30). Otherwise,

we look for calls to ς̃1 to find continuations that can be called at ς̃2 (line 32).

If there are tail calls to ς̃1, we propagate summaries transitively (line 33).

If ς̃2 is an entry over (λl(u k) call), its successor ς̃3 is a state in the same

procedure, so we propagate (ς̃1, ς̃3) (lines 6 – 7). If k is a heap variable (lines

8 – 9), we put ς̃2 in EntriesEsc (so that it can be found from line 29). Also,

if we have seen Exit-Esc states that call k, we create summaries from ς̃2 to

those states (line 11).

If ς̃2 is a tail call (line 34), we find its successors and record the call in

TCallers (lines 35 – 37). If a successor of ς̃2 goes to an exit, we propagate

a cross-procedure summary transitively (line 41). Moreover, if ς̃4 is an Exit-

Esc, we want to make sure that (ς̃1, ς̃4) is in Summary when it is examined.

We cannot call Propagate with true at line 41 because we would be mutat-

ing Summary while iterating over it. Instead, we use a temporary set which

we unite with Summary after the loop (line 42).

62 CHAPTER 5. CFA2 FOR FIRST-CLASS CONTROL

5.3.2 Soundness

The algorithm terminates for the same reasons as the previous algorithm:

there are finitely many edges and no edge is inserted in W twice.

For soundness, it suffices to show that for each reachable abstract state

ς̂, the algorithm visits |ς̂|al. However, first-class continuations create an in-

tricate call/return structure, which complicates reasoning about soundness.

When calls and returns nest properly, execution paths satisfy the unique de-
composition property [59]: for each state ς̂ in the path, we can uniquely

identify a state ς̂ ′ as the entry of the procedure that contains ς̂ (see def. 11,

def. 12, lemma 21).

But in the presence of first-class control, a state can belong to more than
one procedure. For instance, suppose we want to find the entry of the pro-

cedure containing ς̂ in the following path

Î(pr) ;∗ ς̂c ; ς̂e ;
∗ ς̂ ′c ; ς̂ ′e ;

∗ ς̂ ′ ; ς̂

where ς̂ ′ is an Exit-Esc over (k e)γ, ς̂e and ς̂ ′e are entries over def λ(k), ς̂c and

ς̂ ′c are calls. The two entries have the form

ς̂e = (def λ(k), d̂, ĉ, st , h)

ς̂ ′e = (def λ(k), d̂′, ĉ′, st ′, h ′)

Both ĉ and ĉ′ can flow to k and we can call either at ς̂ ′. If we choose to

restore ĉ and st , then ς̂ is in the same procedure as ς̂c. If we restore ĉ′ and

st ′, ς̂ is in the same procedure as ς̂ ′c. However, it is possible that ĉ = ĉ′ and

st = st ′, in which case ς̂ belongs to two procedures. Unique decomposition

no longer holds.

For this reason, we now define a set of corresponding entries for each

state, instead of a single entry.

Definition 16 (Corresponding Entries).

For state ς̂ and path p, CE p(ς̂) is the smallest set such that:

1. if ς̂ is an entry, CE p(ς̂) = {ς̂}
2. if p = p1 ; ς̂1 ;

+ ς̂ ; p2, ς̂ is an Exit-Esc over (k e)γ, ς̂1 is an entry over

def λ(k), then ς̂1 ∈ CE p(ς̂).

3. if p = p1 ; ς̂1 ; ς̂ ; p2, ς̂ is neither an entry nor an Exit-Esc, ς̂1 is

neither an Exit-Ret nor an Exit-Esc, then CE p(ς̂) = CE p(ς̂1).

5.3. SUMMARIZATION FOR FIRST-CLASS CONTROL 63

4. if p = p1 ; ς̂1 ; ς̂2 ;∗ ς̂3 ;+ ς̂4 ; ς̂ ; p2, ς̂ is a ĈApply of

the form (ĉ, d̂, st , h), ς̂4 is an Exit-Esc, ς̂3 ∈ CE p(ς̂4) and has the form

(ulam, d̂′, ĉ, st , h ′), ς̂2 ∈ CE ∗p(ς̂3), ς̂1 is a Call, then CE p(ς̂1) ⊆ CE p(ς̂).

5. if p = p1 ; ς̂1 ; ς̂2 ;+ ς̂3 ; ς̂ ; p2, ς̂ is a ĈApply , ς̂3 is an Exit-Ret,

ς̂2 ∈ CE ∗p(ς̂3), ς̂1 is a Call, then CE p(ς̂1) ⊆ CE p(ς̂).

Items 1, 3 and 5 correspond to the cases of def. 11. However, one might

have expected that in item 5 we would have CE p(ς̂1) = CE p(ς̂) instead

of CE p(ς̂1) ⊆ CE p(ς̂). But because of escaping continuations, CE ∗p(ς̂3) can

contain multiple entries whose predecessor is a call, so we should allow all

these flows.

Note that if ς̂ is an Exit-Esc over (k e)γ, a procedure that contains ς̂ has an

entry ς̂ ′ over iuλ(J(k e)γK). Thus, ς̂ ′ is not in CE p(ς̂) because iuλ(J(k e)γK) 6=
def λ(k). (Remember also that the workset algorithm does not consider the

edge (|ς̂ ′|al, |ς̂|al) to be a summary.) For all other states, CE p(ς̂) is the set of

entries of procedures that contain ς̂.

For each state ς̂, we also define CE ∗p(ς̂) to be the set of entries that can

reach an entry in CE p(ς̂) through tail calls.

Definition 17. For state ς̂ and path p, CE ∗p(ς̂) is the smallest set such that:

• CE p(ς̂) ⊆ CE ∗p(ς̂)

• if p = p1 ; ς̂1 ; ς̂2 ;∗ ς̂ ; p2, ς̂2 ∈ CE p(ς̂), ς̂1 is a Tail Call, then

CE ∗p(ς̂1) ⊆ CE ∗p(ς̂).

Theorem 18 (Soundness). Let p = Î(pr) ;∗ ς̂. Then, after summarization:

• If ς̂ is not final and ς̂ ′ ∈ CE p(ς̂) then (|ς̂ ′|al, |ς̂|al) ∈ Seen

• If ς̂ is a final state then |ς̂|al ∈ Final

• If ς̂ is an Exit-Ret or Exit-Esc and ς̂ ′ ∈ CE ∗p(ς̂) then (|ς̂ ′|al, |ς̂|al) ∈ Seen

The proof of the soundness theorem can be found in appendix A.

5.3.3 Incompleteness

CFA2 without first-class control is complete, so there is no loss in precision

when going from abstract to local states. The algorithm of fig. 5.2 is not

complete; it may compute flows that never happen in the abstract semantics.

Consider the code:

64 CHAPTER 5. CFA2 FOR FIRST-CLASS CONTROL

(define esc (λ (f cc) (f (λ (x k) (cc x)) cc)))

(esc (λ1(v1 k1) (v1 "foo" k1))

(λ (a) . . .))

(esc (λ2(v2 k2) (k2 "bar"))

(λ (b) . . .))

In this program, esc is the CPS translation of call/cc. The two user func-

tions λ1 and λ2 expect a continuation reified as a user value as their first

argument; λ1 uses that continuation and λ2 does not. The abstract seman-

tics finds that {"foo"} flows to a and {"bar"} flows to b.

However, the workset algorithm finds that {"foo","bar"} flows to b. At

the second call to esc, it spuriously connects the entry to the Exit-Esc state

over (cc x) at line 11 (fig. 5.2).

In previous chapters, we saw that kCFA approximates a program as a

finite-state automaton and CFA2 for CPS /1 approximates a program as a

PDS. What kind of transition system does the abstract semantics for RCPS

describe? We cannot translate the semantics to a PDS in the same way

as before, because heaps were part of the control states and now we have

infinitely many heaps.

It seems likely that the abstract semantics corresponds to a machine M

strictly more expressive than PDSs. Fortunately, not knowing what M is

did not stop us from creating a computable overapproximation of it, which

is a testament to the generality of abstract interpretation and operational

semantics.

5.4 Variants for downward continuations

A user lambda that binds a heap continuation variable has the form

(λ1(u k) (...(λ2(u2 k2) (...(k e)...))...))

During execution, if a closure over λ2 escapes upward, merging of contin-

uations at (k e) is unavoidable. However, when λ2 is not passed upward,

the abstract semantics still merges at (k e). A natural question is how pre-

cise can CFA2 be for downward continuations, such as exception handlers

or continuations captured by call/cc that never escape. In both cases, we

5.4. VARIANTS FOR DOWNWARD CONTINUATIONS 65

can avoid merging.

One way to analyze exceptions precisely is by uniformly passing two con-

tinuations to each user function, the current continuation and an exception

handler [4]. Consider a lambda (λ (u k1 k2) (...(k2 e)γ ...)) where

S?(γ, k2) holds. Every Exit-Ret over (k2 e)γ is an exception throw. The han-

dler continuation lives somewhere on the stack. To find it, we propagate

transitive summaries for calls, as we do for tail calls. When the algorithm

finds an edge (ς̃1, ς̃2) where ς̃2 is an Exit-Ret over (k2 e)γ, it searches in

Callers for a triple (ς̃3, ς̃4, ς̃1). If the second continuation argument of ς̃4 is a

lambda, we have found a handler. If not, we propagate a summary (ς̃3, ς̃2),

which has the effect of looking for a handler deeper in the stack. Note that

the algorithm must keep these new summaries separate from the other sum-

maries, so as not to confuse exceptional with ordinary control flow.

For continuations captured by call/cc that are only used downward, we

can avoid merging by combining flow analysis and escape analysis. Consider

the lambda at the beginning of this section. During flow analysis, we track if

any closure over λ2 escapes upward. We do this by checking for summaries

(ς̃1, ς̃2), where ς̃1 is an entry over λ1. If λ2 is contained in a binding reachable

from ς̃2, then λ2 is passed upward and we look up k at (k e) in the heap.

Otherwise, we can assume that λ2 does not escape. Hence, when we see an

edge (ς̃1, ς̃2) where ς̃1 is an entry over λ2 and ς̃2 is an Exit-Esc over (k e),

we treat it as an exception throw. We use the new transitive summaries to

search deeper in the stack for a live activation of λ1, which tells us what

flows to k.

CHAPTER 6

Pushdown flow analysis
using big-step semantics

This chapter presents another approach to pushdown higher-order flow anal-

ysis. We write an abstract interpreter that resembles a traditional inter-

preter: it is a collection of mutually recursive functions, using big-step se-

mantics [23]. We call this analysis Big CFA2.

Big CFA2 is broadly applicable, but less so than CFA2; it applies to typed

and untyped languages, with first-class functions, side effects and excep-

tions, but does not handle first-class control. Big CFA2 is designed for scal-

ability. It minimizes caching and comparing of abstract states, so it is fast

and uses little memory. Also, it finds return points in constant time, without

maintaining a Callers set.

Section 6.1 provides motivation for Big CFA2. Section 6.2 describes the

core algorithm. Sections 6.3, 6.4 and 6.5 describe three extensions to the

core algorithm. In section 6.3, we show how to analyze exceptions precisely

by incorporating them in summaries. Section 6.4 discusses mutable state. In

section 6.5, we show how to use exceptions in the implementation language

to avoid running out of stack. These extensions are orthogonal and can

be implemented on top of each other. For simplicity, we present them as

independent additions to the algorithm of section 6.2. We believe that Big

CFA2 is sound, but have not formally proved soundness. Instead, we argue

the correctness of the algorithms informally.

67

68 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

1 W ← {init}
2 Seen ← {init}
3 while W 6= ∅
4 remove elm from W

5 for every successor elm2 of elm

6 if (elm2 6∈ Seen) then

7 insert elm2 in Seen and W

Figure 6.1: General structure of an iterative flow analysis

6.1 Iterative flow analyses

Flow analyses based on abstract interpretation are usually implemented iter-
atively using a workset. Fig. 6.1 shows the high-level structure of an iterative

analysis. The algorithms for kCFA and CFA2 have this form (see fig. 3.3, 4.8,

5.2). (The workset elements in kCFA are states, whereas in CFA2 they are

pairs of states.) As we mentioned in sec. 2.2, an iterative analysis requires

that all subexpressions of the program be named. During the analysis, every

subexpression causes the creation of one or more abstract states.

We claim that this fine granularity creates extra work for the analysis.

Suppose that we want to analyze a call to a function f with argument a

in environment ρ. For every subexpression in the body of f , an iterative

analysis searches through Seen and compares abstract states for equality—

both expensive operations (line 6).

We make an optimistic assumption: if we have not seen this call to f be-

fore, most states in the body of f will be new. Instead of doing the expensive

search and comparison at every step, we can analyze the whole body blindly,

without caching intermediate results.

6.2 Big CFA2

6.2.1 Syntax and preliminary definitions

Fig. 6.2 shows the target language for Big CFA2. It is an untyped λ-calculus

with numbers and a few operations on numbers. We choose an extended

λ-calculus because the big-step structure of the analysis stands out more if

the target language has more expressions than just lambdas and calls.

6.2. BIG CFA2 69

e ::= x n (λ(x) e) (e1 e2) (ifz e1 e2 e3) (e1 op e2)
op ::= + - . . .

Figure 6.2: Syntax

Val = Pow({R} ∪ Lam)
Heap = Var ⇀ Val

Frame = Var ⇀ Val
Summary = Lab × Time × Val ⇀ Val

Figure 6.3: Abstract domains

The values in the language are numbers and closures. The call-by-value

concrete semantics for numbers, variable lookup, lambdas and calls is stan-

dard. For an (ifz e1 e2 e3) expression, we first evaluate e1 to a value v. If

v is 0, we evaluate e2. If it is a non-zero number, we evaluate e3. It is an

error if v is not a number. The expression (e1 op e2) expects two numeric

operands and gives back a number; op can be any of the usual arithmetic

operators.

Fig. 6.3 shows the abstract domains. Lam is the finite set of lambda

expressions in the program. Numbers abstract to a single abstract number

R. An abstract value is a subset of {R}∪Lam. For scalability, we use Shivers’s

timestamp technique (see sec. 4.6.1). A summary is a pair ((l, t, v), v′) of a

function entry and an abstract value, meaning that if the function labeled l

is called with argument v at time t, it returns an abstract value v′.

6.2.2 Abstract interpreter

The core algorithm for Big CFA2 appears in fig. 6.4. We assume that all

variables in the analyzed program have unique names and every variable

reference is labeled as a stack or a heap reference. Initially, the global vari-

able timestamp is 0 and heap and Summary are empty.

EvalExp takes an expression e and a frame fr and returns an abstract

value, which is the result of evaluating e in the environment fr (and, of

course, the global environment heap). We start the analysis by calling EvalExp

with a closed expression to be analyzed and an empty frame.

EvalExp branches depending on the kind of the input expression e. If e

is a number, we return the singleton set {R} (line 9). If e is a lambda, we

70 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

return the singleton set containing that lambda (line 11).

If e is a variable, we look it up in fr if it is a stack reference and in heap

otherwise (lines 12 – 15). For our small language with single-argument

functions, each frame contains only one binding. In practical languages,

functions are multi-arity and there are local variable declarations, so frames

contain many bindings. However, an important difference from CFA2 is that

we no longer use frames for the results of intermediate computations, we

consume these results immediately.

If e is an arithmetic operation, we evaluate the operands and return {R}
(lines 16 – 19). For convenience, we ignore runtime errors like adding a

number to a function. We discuss exceptions in sec. 6.3.

For ifz expressions, we first evaluate the test e1 (line 21). Since all

numbers abstract to a single abstract number, we cannot know if e1 evaluates

to 0, so we analyze both branches and join the results (line 22).

For a call (e1 e2), we first evaluate the operator and the operand. We call

every lambda that can flow to e1 with av2 and return the join of the results

(lines 23 – 30).

The function ApplyFun is used to analyze a call to a function (λl(x) e)

with abstract value av as the argument. ApplyFun returns an abstract value,

which is the result of the call. We borrow the var notation from JavaScript

to declare local variables (line 33). In line 34, we check if we have seen a

call to λl with the same argument and the same heap. If we find a summary,

we return immediately (line 36). Otherwise, we must analyze the call.

If the formal parameter x is a heap variable, we must update its value in

the heap (line 38). If av contains things that have not yet flowed to x, we

join it with the heap value of x. Since the heap changes, we increase the

timestamp (lines 2 – 4).

We record the timestamp at the beginning of the call because it may

increase during the call (line 39). Then, we create a frame that binds x to

av and evaluate the body of λl (line 40). When the call finishes, we record a

summary and return the result (lines 41, 42).

This algorithm exhibits several desirable properties. First, it minimizes

caching-and-comparing of abstract states. It does not require labeling every

subexpression in the program; it analyzes the direct-style AST as is, and

it uses the results of subexpressions immediately. Also, when it enters a

function for which there is no summary, it assumes that the abstract states

6.2. BIG CFA2 71

1 UpdateHeap(x, av) ,
2 if (av 6v heap[x]) then

3 timestamp ++

4 heap[x] ← heap[x] t av

5

6 EvalExp(e, fr) ,
7 switch e
8 case n
9 return {R}

10 case J(λ(x) e1)K
11 return {J(λ(x) e1)K}
12 case xl

13 if S?(l, x) then

14 return fr[x]
15 return heap[x]
16 case J(e1 op e2)K
17 EvalExp(e1, fr)

18 EvalExp(e2, fr)

19 return {R}
20 case J(ifz e1 e2 e3)K
21 EvalExp(e1, fr)

22 return EvalExp(e2, fr) t EvalExp(e3, fr)

23 case J(e1 e2)K
24 let av1 ← EvalExp(e1, fr)

25 av2 ← EvalExp(e2, fr)

26 res ← ∅
27 in

28 foreach J(λ(x) e)K in av1

29 res ← res t ApplyFun(J(λ(x) e)K, av2)

30 return res

31

32 ApplyFun(J(λl(x) e)K, av) ,
33 var tStart , retv , summ

34 summ ← Summary[l, timestamp , av]

35 if (summ 6= undefined) then

36 return summ

37 if H?(x) then

38 UpdateHeap(x, av)

39 tStart ← timestamp

40 retv ← EvalExp(e, [x 7→ av])
41 Summary[l, tStart , av] ← retv

42 return retv

Figure 6.4: The core algorithm

72 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

in the body are likely to be new. Therefore, unlike iterative analyses, it does

not search the visited set and compare states for equality at every step (cf.
fig. 6.1, line 6).

Second, Big CFA2 finds return points in constant time, without maintain-

ing a Callers set. The call structure of the algorithm follows the call structure

of the analyzed program, so the result of a call can simply be passed to the

context (line 30). Intuitively, the algorithm uses the runtime stack of the im-

plementation language as a data structure to replace Callers. The iterative

CFA2 has to search Callers and compare abstract states for equality (cf. fig.

4.8, line 18).

Last, we avoid “tail duplication” (sec. 4.6.1) by design, because we join

after a control-flow split, in lines 22 and 29.

6.2.3 Analysis of recursive programs

The algorithm of fig. 6.4 does not terminate when the analyzed program is

recursive. When a function entry eventually leads to itself, the second time

we see it we do not have a summary for it yet, so we keep going.

Fig. 6.5 shows how to modify ApplyFun to solve this problem. During

the analysis, we maintain a map called Pending to keep track of entries for

function calls that have not returned.

pen ∈ Pending = Lab → Pow(Time × Val)

For every function λl, if (t, v) is in pen(l) then there is a call to λl that

we have not finished analyzing; the argument passed to λl is v and the

timestamp at the time of the call is t. Intuitively, we can think of Pending as

a set of entries.

We maintain the following invariant: for every ApplyFun frame in the

runtime stack, there is an element in Pending . The size of Pending is bounded.

Therefore, the size of the runtime stack is also bounded.

The local variable retv holds the result of a fixpoint computation. We

initialize it to ∅, which is the bottom abstract value (line 3). We turn lines

39 – 42 of fig. 6.4 to a fixpoint computation (lines 9 – 23). If a pending entry

is equal to the current entry, we have recurred. We create a summary that

maps the current entry to ∅ and return ∅ (lines 11 – 13). The idea is that a

non-terminating recursion returns nothing, i.e., bottom. For a recursion to

eventually terminate with a result, there must be a base case somewhere.

6.2. BIG CFA2 73

1 ApplyFun(J(λl(x) e)K, av) ,
2 var tStart , retv , summ

3 retv ← ∅
4 summ ← Summary[l, timestamp , av]

5 if (summ 6= undefined) then

6 return summ

7 if H?(x) then

8 UpdateHeap(x, av)

9 while true

10 tStart ← timestamp

11 if ((tStart , av) ∈ Pending[l]) then

12 Summary[l, tStart , av] ← ∅
13 return ∅
14 insert (tStart , av) in Pending[l]
15 retv ← retv t EvalExp(e, [x 7→ av])
16 remove (tStart , av) from Pending[l]
17 summ ← Summary[l, tStart , av]

18 if (summ = undefined) then

19 Summary[l, tStart , av] ← retv

20 return retv

21 if (summ = retv) then

22 return retv

23 Summary[l, tStart , av] ← retv

Figure 6.5: Fixpoint computation for recursive functions

If the current entry is fresh, we put it in Pending. Then, we analyze the

body and update retv. After the call, we remove the entry from Pending

(lines 14 – 16). There are three cases. If the call was not recursive, we

do not have a summary for it, so we create one and return (lines 18 – 20).

If it was recursive and the return value of the stored summary is equal to

retv (line 21), then we have reached a fixpoint, so we stop. If the call was

recursive and retv is not equal to summ, then we update the summary and

loop (line 23). Note that, during the while loop, we maintain the invariant

that summ v retv (lines 12, 19, 23).

The operations on Pending can be implemented efficiently. Remember

that every entry in Pending corresponds to an ApplyFun frame. The frames

of ApplyFun on the stack have the form

(l1, t1, v1) (l2, t2, v2) . . . (ln, tn, vn)

where each (li, ti, vi) is a call to λli with argument vi and the value of tStart

is ti. (The analyzed program may be recursive, so the lis need not be dis-

tinct.) Because the timestamp can only increase, we get t1 6 t2 6 . . . 6 tn.

74 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

For a function λl, the elements of Pending[l] are inserted and removed in

a FIFO manner (lines 14, 16). Therefore, we can implement Pending[l] with

a stack s. This way, insertion and removal take constant time. Moreover, if s

contains k pairs,

(t1, v1) (t2, v2) . . . (tk, vk)

we know that t1 6 t2 6 . . . 6 tk. So, at line 11, we can start searching at

the top of s. If we do not find a matching pair, we stop when the timestamp

becomes smaller.

6.2.4 Discarding deprecated summaries to save memory

The size of Summary can grow quickly because new summaries are constantly

added as the heap grows and the timestamp increases. In this section, we

show how to keep the memory usage for Summary low.

Consider a function f, which is part of some larger JavaScript program.

1 function f(x) {

2 ...

3 g(e2);

4 ...

5 }

Assume we are analyzing this program and we find a call to f. We call

ApplyFun to analyze the call. The timestamp has some value t. While an-

alyzing the body of f or the call to g (lines 2, 3) it is likely that the heap

will be modified, so the timestamp will increase. After we return from g, we

analyze the rest of f and create a summary. This summary is unnecessary; it
will never be used in the rest of the analysis. The summary contains the older

timestamp t. But when ApplyFun searches for a summary, it uses the current
value of the timestamp (fig. 6.5, line 4).

Each timestamp increase deprecates all summaries with a smaller times-

tamp. We implement Summary as a hash table with function labels as keys.

Thus, the bucket for a label l contains all summaries for λl. We maintain the

following invariant: all summaries in a bucket have the same timestamp.

When we insert a summary ((l, t, v), v′), if the other summaries for λl have a

smaller timestamp, we discard them.

6.3. EXCEPTIONS 75

1 ApplyFun(J(λl(x) stm)K, av) ,
2 . . .
3 fr ← [x 7→ av]
4 W ← {stm}
5 while W 6= ∅
6 remove a statement s from W

7 if (s is Jreturn e;K) then

8 Call EvalExp(e, fr) and join the result with retv

9 else

10 Call EvalStm(s, fr) and add the successors of s to W

11 . . .

Figure 6.6: Pseudocode for the analysis of statements

6.2.5 Analysis of statements

Most mainstream higher-order languages are not expression-based like Lisp,

Scheme and ML. They also have statements and use C-style syntax. Here,

we sketch briefly how to extend Big CFA2 for languages with statements.

In languages with C-style syntax, a statement cannot be a subterm of an

expression, but an expression can be a subterm of a statement. Therefore,

we can analyze expressions recursively and statements iteratively.

Before flow analysis, we process the AST and connect each statement to

its successors to form a control-flow graph. Branch statements such as if

and switch have more than one successor.

The body of a function (λl(x) stm) is now a block statement stm. In

ApplyFun, we use a workset for statements. We turn line 15 in fig. 6.5 to an

iteration that uses the workset. Fig. 6.6 shows the pseudocode. The function

EvalStm analyzes a statement and returns its successors.

Even though we are using a workset for statements, we are not caching

analysis results for each statement. A statement contributes to the analysis

by influencing the return value retv and by causing changes in heap.

6.3 Exceptions

Exceptions create a different control flow from normal function call and re-

turn. An exception may propagate down the stack, causing several frames

to be popped until a handler is found. Also, a function may throw an excep-

tion if called in one calling context and return normally in another. In this

section, we show how pushdown analyses can deal with exceptions with the

76 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

1 EvalExp(e, fr) ,
2 switch e
3 case J(try e1 catch e2)K
4 let (av1 , exn1) ← EvalExp(e1, fr)

5 in

6 if exn1 then

7 let (av2 , exn2) ← EvalExp(e2, fr)

8 in

9 return (av1 t av2 , exn2)

10 return (av1 , false)

11 case J(ifz e1 e2 e3)K
12 let (av1 , exn1) ← EvalExp(e1, fr)

13 in

14 if (lam ∈ av1) then

15 exn1 ← true

16 if (R 6∈ av1) then

17 return (∅, exn1)

18 let (av2 , exn2) ← EvalExp(e2, fr)

19 (av3 , exn3) ← EvalExp(e3, fr)

20 in

21 return (av2 t av3 , exn1 or exn2 or exn3)

Figure 6.7: Changes to EvalExp for exceptions

same precision as normal return values; an exception is only propagated to

the correct calling context. Our solution is not specific to Big CFA2, it also

applies to CFA2 and any other summary-based analysis.

Our small dynamic language throws an exception if there is a type mis-

match at runtime, like Scheme. For example, adding a number to a function

is an error; when the test expression of ifz evaluates to a function, it is an

error; applying a number is an error. These are the only errors that we will

deal with.

We do not add an explicit (throw e) expression. Also, we use a single

error value instead of multiple kinds of errors. These two features are useful

in a real language, but not fundamental for an analysis. Our minimal ex-

ception system is expressive enough to demonstrate all important issues of

exception handling.

We add an expression (try e1 catch e2) with the following concrete

semantics: if e1 evaluates to a value, it is the result of the expression; if e1
throws the sole error value, the evaluation of e2 determines the result of the

expression.

EvalExp now returns a pair (av, exn) where av is the abstract value of

e and exn is a boolean. If exn is true, e may throw an exception. Fig. 6.7

6.3. EXCEPTIONS 77

1 ApplyFun(J(λl(x) e)K, av) ,
2 var tStart , retv , exn , retv2 , exn2 , summ

3 retv ← ∅
4 exn ← false

5 summ ← Summary[l, timestamp , av]

6 if (summ 6= undefined) then

7 return summ

8 if H?(x) then

9 UpdateHeap(x, av)

10 while true

11 tStart ← timestamp

12 if ((tStart , av) ∈ Pending[l]) then

13 Summary[l, tStart , av] ← (∅, false)

14 return (∅, false)

15 insert (tStart , av) in Pending[l]
16 (retv2 , exn2) ← EvalExp(e, [x 7→ av])
17 retv ← retv t retv2

18 exn ← exn or exn2

19 remove (tStart , av) from Pending[l]
20 summ ← Summary[l, tStart , av]

21 if (summ = undefined) then

22 Summary[l, tStart , av] ← (retv , exn)

23 return (retv , exn)

24 if (summ = (retv , exn)) then

25 return summ

26 Summary[l, tStart , av] ← (retv , exn)

Figure 6.8: Changes to ApplyFun for exceptions

shows how to analyze try/catch and how to change ifz for exceptions. The

changes for the other expressions are similar.

When e is (try e1 catch e2), we first evaluate e1 (line 4). (We use

pattern-matching to access the components of the pair.) If e1 does not throw,

e evaluates to av1 (line 10). If exn1 is true, e1 may throw, so we evaluate e2
(line 7). The value of e is av1 t av2 and it throws iff e2 throws (line 9).

When e is (ifz e1 e2 e3), we evaluate the test (line 12). If there is a

lambda in av1, e1 can throw, so we set exn1 to true (line 15). Moreover, if

R is not in av1, control cannot reach the branches of ifz, so we return (line

17). Otherwise, we evaluate both branches. If at least one of e1, e2, e3 can

throw, then e can throw (line 21).

If a function throws an exception, we can record that in a summary.

Summary now maps entries to pairs of return values and booleans.

Summary = Lab × Time × Val ⇀ Val × Boolean

Fig. 6.8 shows the new ApplyFun. The changes are simple. ApplyFun

78 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

returns a pair of an abstract value and a boolean. We use the local variable

exn to record if the function can throw an exception. The bottom summary

for recursion is now (∅, false) (line 14). To decide if we have reached the

fixpoint, we look at both the return value and the exception (line 24).

6.4 Mutation

In a language with mutable variables, stack and heap references interact. A

change in the value of a heap reference may cause a change in the value of

a stack reference and vice versa. Consider the following JavaScript snippet.

function f1(x1) {

(function g1() { x1 = "foo"; })();

return x1;

}

f1(5);

function f2(x2) {

x2 = "foo";

return (function g2() { return x2; })();

}

f2 (44);

In f1, we assign to the heap reference of x1 and the return uses a stack

reference. A sound analysis should find that x1 can be bound to a string in

the frame. Similarly, in f2, a sound analysis should find that a string can

flow to the heap reference of x2.

Suppose we add an expression (x := e) in our language, with the fol-

lowing semantics: the result of evaluating the rvalue e is assigned to x and

is also the result of the expression. How would we change Big CFA2? One

solution is to change how we classify variable references: if a reference of a

heap variable x is assigned, we classify all x references as heap references.

This is not ideal because it sacrifices precision for all x references to ensure

soundness.

In this section, we describe a solution that does not change the classifica-

tion of references. We use timestamps in the frames and the heap to know

when bindings are created or modified.

6.4. MUTATION 79

1 UpdateHeap(x, av) ,
2 let (hav , hts) ← heap[x]
3 in

4 if (av 6v hav) then

5 timestamp ++

6 heap[x] ← (hav t av , timestamp)

7

8 EvalExp(e, fr) ,
9 switch e

10 case J(xl := e1)K
11 let (av , fr2) ← EvalExp(e1, fr)

12 in

13 if H?(l, x) then

14 UpdateHeap(x, av)

15 return (av , fr2)

16 if H?(x) then

17 UpdateHeap(x, av)

18 return (av, fr2[x 7→ (av, timestamp)])

19 case xl

20 if S?(x) then

21 return ((car fr[x]), fr)

22 if H?(l, x) then

23 return ((car heap[x]), fr)

24 let (frav , frts) ← frame[x]
25 (hav , hts) ← heap[x]
26 in

27 if (frts < hts) then

28 return (hav , fr[x 7→ (hav, timestamp)])
29 return (frav , fr)

30 case (ifz e1 e2 e3)
31 let (av1 , fr1) ← EvalExp(e1, fr)

32 (av2 , fr2) ← EvalExp(e2, fr1)

33 (av3 , fr3) ← EvalExp(e3, fr1)

34 in

35 return (av2 t av3 , fr2 t fr3)

36

37 ApplyFun(J(λl(x) e)K, av) ,
38 ...

39 retv ← retv t EvalExp(e, [x 7→ (av, tStart)])
40 ...

Figure 6.9: Changes to the code for mutation

80 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

Heap = Var ⇀ (Val × Time)

Frame = Var ⇀ (Val × Time)

Fig. 6.9 shows the new code. Evaluating an expression may change a

binding in the frame, so EvalExp returns a pair of an abstract value and a

new frame.

When e is (xl := e1), we evaluate the rvalue e1 (line 11). If xl is a heap

reference, we must update the heap (line 14). If UpdateHeap changes the

heap value of x, it marks the new binding with the current timestamp (line

6). In lines 16 – 18, xl is a stack reference. The assignment will change

the binding of x in the frame. Thus, the frame in the result indicates that

x is bound to av and the binding happened at time timestamp (line 18).

Moreover, if x is a heap variable, we call UpdateHeap because the assignment

may impact the heap references of x (line 17). Generally, for any heap

variable x, we maintain the invariant that the heap binding of x is more

general than any of x’s stack bindings.

When e is a variable reference xl and x is a stack variable, we look it up

in fr (line 21). In lines 22 – 29, x is a heap variable. If xl is a heap reference,

we look it up in the heap (line 23). The case when xl is a stack reference

of a heap variable is more involved. First, we look up x in both the frame

and the heap (lines 24, 25). If the heap binding is fresher than the frame

binding (line 27), x changed in the heap after we last bound it in the frame,

so to be sound we update its frame binding with the heap value hav (line

28). Otherwise, we return the frame value (line 29).

Mutation requires that we make simple changes to the treatment of the

other expressions. We only show the changes to ifz, the other cases are sim-

ilar. We first evaluate the test e1 (line 31). We then evaluate both branches

in the new environment fr1. The branches can have different side effects,

so we join fr2 and fr3 in the result (line 35).

As an aside, note that when an expression changes the frame, we create

a new frame instead of mutating fr. Thus, expressions in the same function

can be evaluated in different environments, which makes Big CFA2 flow

sensitive. This choice is not fundamental for the analysis; one could modify

EvalExp to get flow insensitivity.

ApplyFun stays practically unchanged. We only modify line 15 because

frame bindings now contain timestamps (line 39).

6.5. MANAGING THE STACK SIZE 81

6.5 Managing the stack size

Big CFA2 is deeply recursive. If it is implemented in a mainstream language

with a fixed-size stack, it will run out of stack even for mid-sized programs.

In this section, we show how to keep stack usage to a minimum.

We have mentioned that every live activation of ApplyFun corresponds

to a function entry

(l1, t1, v1) (l2, t2, v2) . . . (ln, tn, vn)

and t1 6 t2 6 . . . 6 tn. If the current timestamp is tn, every pending entry

whose timestamp ti is less than tn is deprecated; it will lead to the creation

of a summary that will not be used (sec. 6.2.4).

If the implementation language provides exceptions, we can throw an
exception to clear unneeded pending calls to ApplyFun off the stack. Even

though we cannot inspect the stack directly to find these calls, we can do

it indirectly by looking in Pending. Suppose the entry in the most recent

ApplyFun activation is (l, t, v). We list three ways to do stack cleaning, from

least to most aggressive.

1. If there is a pending entry (l, t′, v) where t′ < t, clear the stack up to that

entry. With this strategy, we only throw an exception when there is a

pending call to the same function with the same argument.

2. If there is a pending entry (l, t′, v′) where t′ < t, clear the stack up to that

entry. With this strategy, we throw every time there is a pending call to

the same function, regardless of the argument.

3. If there is a pending entry (l′, t′, v′) where t′ < t, clear the stack up to that

entry. This strategy never allows a deprecated entry on the stack.

We implemented all three and settled for the second one. Strategy 3 is the

slowest because by clearing the stack more often it causes more re-analysis.

Strategies 1 and 2 perform about the same, but strategy 2 keeps the stack

smaller. In the rest of this section, we show how to implement strategy 2.

EvalExp does not change. Fig. 6.10 shows the new ApplyFun. We wrap

the body of the while loop in a try block (lines 11 – 27). Lines 12 – 14 are

new: before we analyze the body of λl, we retrieve the set of pending entries

for λl (line 12). If there is an entry whose timestamp is smaller than tStart

(line 13), we want to clear the stack.

82 CHAPTER 6. PUSHDOWN FLOW ANALYSIS USING BIG-STEP SEMANTICS

1 ApplyFun(J(λl(x) e)K, av) ,
2 var tStart , retv , summ , pen

3 retv ← ∅
4 summ ← Summary[l, timestamp , av]

5 if (summ 6= undefined) then

6 return summ

7 if H?(x) then

8 UpdateHeap(x, av)

9 while true

10 try {

11 tStart ← timestamp

12 pen ← Pending[l]
13 if (pen contains (ts ,av2) such that ts < tStart) then

14 throw {label: l, numframes: |pen|, justthrown: true}

15 if ((tStart , av) ∈ pen) then

16 Summary[l, tStart , av] ← ∅
17 return ∅
18 insert (tStart , av) in Pending[l]
19 retv ← retv t EvalExp(e, [x 7→ av])
20 remove (tStart , av) from Pending[l]
21 summ ← Summary[l, tStart , av]

22 if (summ = undefined) then

23 Summary[l, tStart , av] ← retv

24 return retv

25 if (summ = retv) then

26 return retv

27 Summary[l, tStart , av] ← retv

28 }

29 catch (exn) {

30 if (exn.justthrown) then

31 exn.justthrown ← false

32 throw exn

33 remove (tStart , av) from Pending[l]
34 if (exn.label 6= l) then

35 throw exn

36 if (exn.numframes 6= 1) then

37 exn.numframes --

38 throw exn

39 }

Figure 6.10: Using exceptions to keep the stack small

6.5. MANAGING THE STACK SIZE 83

At this point, there are |pen| frames of ApplyFun in the stack for λl besides

the current one. There is no entry in Pending for the current frame because

insertion happens at line 18. We know |pen| > 1 because the test at line

13 was true. The deepest of these frames is for an entry of the form (l, t, v)

where t < tStart. We want to throw to that frame and resume the analysis

there. The thrown value is a record that contains the label of the function

that caused the throw, the number of pending entries for that function and

a boolean flag justthrown set to true (line 14).

The catch block is responsible for stopping the propagation of the excep-

tion at the right frame (lines 30 – 38). The variable exn is local to the catch

body and gets bound to the thrown value.

If exn.justthrown is true, the exception was just thrown from the cur-

rent activation of ApplyFun. Thus, we set the flag to false and propagate

the exception down the stack (lines 30 – 32).

If exn.justthrown is false, the exception was thrown from another

frame and propagated here. Lines 34 – 38 decide if we need to rethrow

or if we resume the analysis here. In both cases, we remove the entry for the

current ApplyFun activation from Pending (line 33) to maintain the invari-

ant (see sec. 6.2.3).

The function that caused the throw is labeled exn.label. If the current

frame is for another function, i.e., exn.label 6= l, we rethrow (line 35). If

this frame is for the right function, but it is not the deepest one, we decrease

the count for pending frames and rethrow (lines 36 – 38). If exn.numframes

is 1, we must resume the analysis here. Control leaves the catch block and

goes back to the start of the while loop. By clearing the stack, Pending[l] is

now ∅ so control will reach line 19 and continue the analysis.

CHAPTER 7

Building a static analysis for JavaScript

In this chapter, we report on the implementation of DoctorJS, a static-analysis

tool for JavaScript based on Big CFA2.1 Our primary purpose is to highlight

the trade-offs involved when building a static analysis for full JavaScript.

For some language constructs, we present several possible abstractions, each

with its own pros and cons.

JavaScript has only one kind of composite data: the object. Functions,

arrays and regular expressions are all objects. The language compensates for

this lack of variety by making objects extremely flexible. Objects are maps

from property names to values. The number of properties in an object is

not fixed: properties can be added to and deleted from objects at runtime.

The variable object size combined with inheritance make static analysis diffi-

cult, because adding (resp. removing) properties can shadow (resp. expose)

inherited properties.

There are three basic requirements of any static analysis: speed, precision

and soundness. We do not know how to satisfy all three for JavaScript.

DoctorJS leans toward speed and precision and allows false negatives in

some cases.

Section 7.1 gives some necessary background on the JavaScript object

model. In section 7.2, we describe how DoctorJS handles various JavaScript

constructs. We mainly discuss the difficulties related to the analysis of ob-

jects. We omit the discussion of some interesting but less prominent features,

such as eval, with, the arguments array and property attributes (enumer-

able, writable, configurable).

1Big CFA2 did not predate DoctorJS. DoctorJS was the result of the author’s effort to
apply the ideas in CFA2 to static analysis of JavaScript. Big CFA2 is the part of DoctorJS
that is not specific to JavaScript.

85

86 CHAPTER 7. BUILDING A STATIC ANALYSIS FOR JAVASCRIPT

DoctorJS was built in collaboration with Mozilla. It is open source and

available from github.com/mozilla/doctorjs.

7.1 Basics of the JavaScript object model

Object properties

A JavaScript object is a map from property names to values. A property

name is a string. Unlike Java, the number of properties in an object can

change dynamically; at runtime, properties can be added to and deleted

from objects at will. If we assign to a non-existent property, the property

gets created automatically.

There are two ways to access a property of an object.

• Dot notation: In the expression obj.foo, obj is an arbitrary expression

that evaluates to an object and foo is a string constant, which acts as the

property name.

• Computed property access: In the expression obj[foo], foo is not a

constant, it is an arbitrary expression. If foo evaluates to a value v that

is a string, v becomes the property name. If not, v is coerced to a string,

which becomes the property name.

This semantics has two important implications. First, since an abstract object

must have a bounded number of properties, some properties of a concrete

object must be merged together in the analysis. Second, in the expression

obj[foo], finding which string foo evaluates to is undecidable. Therefore,

field-sensitive analysis [55] is undecidable for JavaScript.

Prototypal inheritance

JavaScript does not have classes. Inheritance is object-based. When an ob-

ject o is created, it is assigned a prototype object. When we try to access a

property p of o, if o has the property, its value is returned. Otherwise, we

look for p in o’s prototype, and in the prototype of o’s prototype and so on,

until either p is found or we reach the top of the prototype chain. If p is not

found, the special value undefined is returned. Every object has at most one

prototype and the runtime enforces that the prototype chain has no cycles.

7.2. HANDLING OF JAVASCRIPT CONSTRUCTS 87

Object creation

There are two ways to create an object. The first is by using an object-literal

expression. For example, the expression {a: 5, b: "hello"} evaluates to

an object with properties a and b. Objects created this way are assigned

some default prototype.

Alternatively, one can call a function with the new keyword. For example,

if we have the following function

function Foo(x) {

this.a = x + 5;

this.b = "hello";

}

we can call new Foo(13) to create an object with two properties. A function

can be called both with and without new in the same program, but in practice

this rarely happens. By convention, when a function is used to create objects,

its name starts with a capital letter, it is always called with new and people

refer to it as a constructor. Every object created by a call new Foo(...) is

said to belong in “class” Foo.

As we mentioned, functions are objects. By default, every function ob-

ject has a prototype property, which points to some object o; o is not the

prototype of the function. We can control inheritance by assigning to the

prototype property. If we say

Foo.prototype = {c: 94};

then {c: 94} becomes the prototype of all subsequently created Foo objects.

7.2 Handling of JavaScript constructs

Abstracting objects affects inheritance

In a static analysis, some properties of a language that are intuitive and well

established suddenly cease to hold because of approximation. For example,

a sound static analysis for JavaScript must allow cycles in the prototype

chain and objects that have more than one prototype. These issues arise

regardless of the abstraction used. (Naturally, a more precise abstraction

runs into these issues less often.)

88 CHAPTER 7. BUILDING A STATIC ANALYSIS FOR JAVASCRIPT

d

p

k

(a) Concrete

d

p,k

(b) Abstract

Figure 7.1: Example: cycle in the prototype chain

The following snippet shows how an abstract object can have many pro-

totypes. The abstract value of the expression exp becomes the prototype of

o1. For any given abstraction, we can cause exp to evaluate to a set of two

or more abstract objects, which are all possible prototypes of o1.

function Foo() = { ... };

Foo.prototype = exp;

var o1 = new Foo ();

A program can create an unbounded number of objects. Therefore, some

concrete objects are approximated by the same abstract object during static

analysis. Approximation can create cycles in the prototype chain.

1 function create(Constructor) {

2 return new Constructor ();

3 }

4 function Parent () { ... }

5 function Kid() { ... }

6 Kid.prototype = create(Parent);

7 var k = create(Kid);

In this program, the higher-order function create takes a constructor as

an argument and returns an object. The first call to create returns a Parent

object p. Since we have not changed the default prototype property of

Parent, p is assigned a default prototype object d. The second call to create

returns a Kid object k, whose prototype is p (fig. 7.1a).

A common abstraction for objects is to merge all concrete objects allo-

cated at the same program point to a single abstract object. With this ab-

straction, the analysis merges the Parent and Kid objects to a single abstract

object created at line 2. A possible prototype of this object is itself (fig. 7.1b).

7.2. HANDLING OF JAVASCRIPT CONSTRUCTS 89

DoctorJS allows cycles in the prototype chain and objects with many

prototypes. When we do a property lookup, we record seen objects as we go

up the chain to detect cycles and ensure termination.

Arrays used as tuples

JavaScript does not have tuples. Instead, programmers often use array ob-

jects as tuples. The elements of a tuple can be heterogeneous, so we try to

distinguish them to avoid merging.

1 var a, i, x, y, z;

2 a = [1, "abc"];

3 x = a[0];

4 y = a[i];

5 z = a[0];

In this program, we create an array with two elements at line 2. At line

3, we find that x is bound to a number. At line 4, the index is a variable,

so we merge the properties “0” and “1” to a single property that is bound to

either a number or a string. At line 5, we find that z is bound to either a

number or string.

In general, we keep the properties of an array separate until the first time

it is accessed with a non-constant index. Then, we assume that the array is

not a tuple and merge its elements. Every subsequent access gets the join of

all elements.

Technically, all property names in JavaScript are strings. However, the

string “31” is numeric, while “hello” is not. DoctorJS distinguishes between

numeric and non-numeric property names to increase precision. For in-

stance, we may merge all elements of an array of strings together, but we do

not merge them with the “length” property, so we can find that the value of

“length” is a number.

Out-of-bounds array indices

Consider the expression a[i] where a evaluates to an array and i to a num-

ber. If i is a valid index in the array, the corresponding element is returned.

If not, the result is the undefined value—no exception is thrown. (Accessing

an array element is the same as any other property access.)

90 CHAPTER 7. BUILDING A STATIC ANALYSIS FOR JAVASCRIPT

o1x = "foo"

o2 o3

(a) Concrete

ao1x = "foo"

ao2

(b) Abstract

Figure 7.2: Example: property assignment

The possible analysis choices for a[i] are a good demonstration of the

trade-off between speed, precision and soundness.

• Fast, imprecise, sound: If all numbers abstract to a single abstract num-

ber R, then the analysis cannot know if the access is in bounds. For

soundness, every element access must include undefined in the result-

ing abstract value. Clearly, this is imprecise.

• Fast, precise, unsound: If all numbers abstract to R, we can be precise by

optimistically assuming that most accesses will be in bounds. Then, we

return the join of the array elements, but not undefined.

• Slow, precise, sound: To analyze a[i] both safely and precisely, one must

use a more complex lattice for abstract numbers that can reason about

numeric ranges. In this case, lattice operations are slower.

DoctorJS currently uses the second solution.

Assigning to a property

To evaluate an expression such as obj.x = 21, we first evaluate obj to an

object o. If o has a property named x that is not inherited, we set the value

of x to 21. Otherwise, we create a new property named x on o with value 21.

The new property may shadow an inherited property with the same name.

New property Adding properties to objects during static analysis is not

straightforward. Suppose there are two objects o2 and o3 which inherit

from o1 (fig. 7.2a); o1 has a property x bound to a string. Now let’s assume

that a static analysis cannot distinguish o2 and o3; they both abstract to an

object ao2, and o1 abstracts to ao1 (fig. 7.2b).

How would we analyze obj.x = 21, where obj evaluates to ao2? The

first solution that comes to mind is to add the property x to ao2, which is

unsound. In the concrete, it is possible that the assignment happens only for

7.2. HANDLING OF JAVASCRIPT CONSTRUCTS 91

one of the two objects, say o3. Then, o3.x is 21 and o2.x is still "foo". If

we add x to ao2, then we shadow ao1.x, so ao2.x cannot be a string.

A sound analysis cannot unconditionally add a property to an object. It

must mark the new property as “possibly there.” If we look up such a prop-

erty, we have to keep searching up the prototype chain for properties with

the same name. If all occurrences of a property in the chain are “possibly

there,” we must include undefined in the result.

The sound solution is imprecise in the case when a new property is added

to all concrete objects approximated by an abstract object. Also, it slows

down property lookups. DoctorJS adds new properties to abstract objects

unconditionally, which is unsound.

Existing property When assigning to an existing property, we just join the

rvalue with the value of the property. However, the assigned property may

be a computed property, as in obj[exp] = 21. In DoctorJS, if we cannot

find which string exp evaluates to, we merge all properties of the object into

one and do the assignment.

Because of computed properties, the choice of abstraction for strings has

a big impact on a JavaScript static analysis. Approximating all strings with

a single abstract string is fast but imprecise; computed properties are very

common. In DoctorJS, an abstract string is either a string literal that appears

in the program text or an unknown string. So, we propagate string con-

stants, but any operation on strings immediately goes to top. Even though

this abstraction is more precise than a single abstract string, we would like to

try more sophisticated lattices to improve precision for computed properties.

Property deletion

Deleting a property from an object raises similar issues for an analysis as

creating a property by assignment. Since an abstract object generally rep-

resents many concrete objects, deleting the property is unsound, because in

the concrete semantics the deletion may happen only to some of the objects.

The sound and slower solution is to mark the property as “possibly there.”

Our solution in DoctorJS is to do nothing; we leave the abstract object

unchanged. This is the simpler of the two unsound solutions. Property

deletion is rare in practice [53], so handling it unsoundly does not change

the analysis results substantially.

92 CHAPTER 7. BUILDING A STATIC ANALYSIS FOR JAVASCRIPT

The prototype property of constructors

For every function f in the program, JavaScript automatically creates an ob-

ject o and sets the prototype property of f to o. If f is used as a constructor,

o becomes the prototype of the new object. The default object o is rarely use-

ful, so programmers commonly set the prototype property of constructors

to an object o′ of their choosing.

We want to avoid binding the prototype property to a set {o, o′}, if only

o′ is going to be used. For this reason, we create the prototype property on

functions lazily. During the analysis, if a function f is called with new, we

check if it has a prototype property. If so, we use the referenced object as

the prototype of the new object. If not, we create the property and a default

object at that moment. This way, when programmers replace the default

object o with o′, the prototype of objects created by f is {o′}, not {o, o′}.

Core objects

JavaScript provides a small set of objects in every host environment, even

in a non-browser environment. Some of these are Object, Function, Array,

Number, String and RegExp. DoctorJS can reason about the core objects.

At the beginning of the analysis, we set up the abstract heap. We first cre-

ate the global object. All globally available names, such as NaN and Infinity

become properties of the global object. We create one abstract object in

the heap for every core object and add properties to the global object that

point to the core objects, e.g., the global variable Array points to the abstract

Array object.

Some core methods can be called on scalars. For example, the expres-

sion "abc".charAt(0) is legal; "abc" is coerced to a String object, which

becomes the target object of the method call. We model this behavior by cre-

ating dummy Number, String and Boolean objects during the initialization

phase. When a method is called on a scalar, we use the dummy object of the

same type for the call.

CHAPTER 8

Evaluation

This chapter presents results from two implementations of our analyses. In

section 8.1, we discuss a Scheme implementation of CFA2 without first-

class control. In section 8.2, we discuss an implementation of Big CFA2

for JavaScript. Our experimental results provide evidence to support the

thesis that pushdown models are more suitable than finite-state models for

higher-order flow analysis.

8.1 Scheme

To support our claim that call/return matching improves dataflow informa-

tion, we used CFA2, 0CFA and 1CFA to perform constant propagation and

folding. We implemented the three analyses in the Twobit compiler [10], for

a subset of Scheme with numbers, booleans, pairs and explicit recursion.

We implemented CFA2 with stack filtering. Also, we did not widen the

targets of path edges to prevent tail duplication (see sec. 4.6.1). We only

widened the abstract heap; instead of a heap per state, we used a global

heap and states carry timestamps. Similarly, we used a global variable envi-

ronment and timestamps on states for 0CFA and 1CFA.

We compared the effectiveness of the analyses on a small set of bench-

marks (table 8.1). We measured the number of stack and heap references in

each program and the number of constants found by each analysis. The im-

plementations are unoptimized prototypes, so we did not measure running

times. To estimate how well an optimized implementation would do, we

counted the number of elements inserted in the workset by each analysis.

(Note that 0CFA and 1CFA visit abstract states, whereas CFA2 visits pairs of

93

94 CHAPTER 8. EVALUATION

0CFA 1CFA CFA2
LOC S? H? visited const. visited const. visited const.

len 6 9 0 81 0 126 0 55 2
rev-iter 6 17 0 121 0 198 0 82 4
tree-count 6 33 0 293 2 2856 6 183 10
len-Y 11 15 4 199 0 356 0 131 2
flatten 13 37 0 1520 0 6865 0 478 5
ins-sort 14 33 5 509 0 1597 0 600 4
church-nums 35 46 23 19130 0 19411 0 22671 0
sets 41 90 3 3915 0 54414 0 4251 4
DFS 42 94 11 1337 8 6890 8 1719 16

Table 8.1: Scheme mini-benchmark results

states.) The running time of an analysis increases as the size of the state

space increases.

The chosen benchmarks exhibit a variety of control-flow patterns. Len

computes the length of a list recursively. Rev-iter reverses a list tail-recur-

sively. Tree-count counts the nodes in a binary tree. Len-Y computes the

length of a list using the Y-combinator instead of explicit recursion. Flatten

turns arbitrarily nested lists into a flat list. Ins-sort sorts a list of numbers

using insertion-sort. Church-nums tests distributivity of multiplication over

addition for a few Church numerals. Sets defines the basic set operations

and tests De Morgan’s laws on sets of numbers. DFS does depth-first search

of a graph.

CFA2 finds the most constants, followed by 1CFA. 0CFA is the least pre-

cise. Also, the increased precision of CFA2 creates fewer spurious flows, so

the state space is small. Even though we did not do much widening for

CFA2, its visited set is comparable in size to that of 0CFA. In five out of nine

cases, CFA2 visits fewer paths than 0CFA does states. The visited set of CFA2

can be up to 3.2 times smaller (flatten), and up to 1.3 times larger (DFS)

than the visited set of 0CFA. The state space of 1CFA is larger than both

0CFA (9/9 cases) and CFA2 (8/9 cases). Moreover, the state space of 1CFA

can be significantly larger than that of CFA2 in some cases (15.6 times in

tree-count, 14.4 times in flatten, 12.8 times in sets).

Naturally, the number of stack references in a program is much higher

than the number of heap references; most of the time, a variable is refer-

enced only by the lambda that binds it. Thus, CFA2 uses the precise stack

lookups more often than the imprecise heap lookups.

8.2. JAVASCRIPT 95

8.2 JavaScript

In chapter 7, we presented DoctorJS, a static analysis for JavaScript based on

Big CFA2. DoctorJS is itself written in JavaScript, using the NodeJS frame-

work.1 We use Narcissus for lexing and parsing.2 After parsing, we perform

several transformations on the AST before static analysis, e.g., name vari-

ables uniquely, desugar away some constructs, classify references into stack

and heap.

DoctorJS is not tied to a particular analysis client; it can potentially be

used for several kinds of tools. So far, we have used DoctorJS for type infer-

ence, and to search how often specific program behaviors happen in a large

code base. In this section, we discuss these two applications and report on

some experiments we conducted. For the experiments, we used a machine

with an Intel E8400 processor (2 cores, 3GHz, 6MB L2 cache), 2GB of RAM,

running Ubuntu 11.10.

8.2.1 Type inference

A common and useful application of flow analysis in a dynamic language is

type inference. Type information can be used to find bugs, or in an IDE to

provide informative code completion, help with refactoring, etc. We wrote

a simple type-inference pass for DoctorJS. After the analysis, we process the

results and turn abstract values into types, which can be presented to the

user or written to a file in some standard format.

An abstract value is a (possibly empty) set of abstract scalars and objects.

Numbers abstract to a single abstract number. An abstract boolean is true,

false or an unknown boolean. An abstract string is either a string literal

that appears in the program text or an unknown string. Null and undefined

abstract to themselves. All concrete objects created at the same program

point are represented by a single abstract object that maps a finite number

of property names to abstract values.

We turn an abstract value, which is a set S, into a type by taking the

union of the types of the elements of S. Abstract strings have type string

and abstract booleans have type boolean. The other abstract scalars can be

used as types without change. The type of an abstract object depends on

1nodejs.org
2github.com/mozilla/narcissus

96 CHAPTER 8. EVALUATION

whether the object is a function, an array, or some other object.

The type of a function describes the types of the arguments and the re-

sult. We do not use type variables in the types of polymorphic functions. In

the following program, id is called with a number and a string.

function id(x) { return x; }

var n = id(8);

var s = id("hello ");

The inferred type for id is {number, string} → {number, string}. This type

is not ideal; it implies that id could take a number and return a string.

This imprecision does not impact the call sites of id; because of call/return

matching, we find the precise types for n and s.

In order to calculate the input and output types of a function, we may

have to traverse the object graph in the abstract heap. If we run into circular

objects, we return the type any. For example, the inferred type for id in the

following program is any→ any.

function id(x) { return x; }

id(id);

The type of a heterogeneous array is Array. For a homogeneous array,

we also report the type of the elements. For other objects, we use the name

of the constructor as the type.

Benchmarks We ran the type inference on two well-known benchmark

sets, the V8 benchmarks (version 6) and the SunSpider benchmarks. The

results appear in table 8.2. We measured the running time and memory

requirements of the analysis (median values for 3 runs, no significant varia-

tion).

The results show that the analysis is fast and lightweight. Each SunSpider

benchmark is a few hundred lines or less. (Regexp-dna is 1708 lines because

of a big input string, the actual code is less than 100 lines.) The median

analysis time is 110ms and the median memory consumption is 5.8MB. The

V8 benchmarks range from 394 to 4684 lines of code, with a median analysis

time of 648ms and a median memory consumption of 14.2MB.

After manual inspection of the results, we found that the inferred types

are usually precise. For example, table 8.3 shows the types of the top-level

functions in SunSpider’s crypto-aes program. We write [num] to mean an

8.2. JAVASCRIPT 97

SunSpider size (KB) size (LOC) time (ms) mem (MB)
3d-cube 8.5 341 332 8.4
3d-morph 2 34 100 5.2
3d-raytrace 34.5 418 335 10.4
access-binary-trees 1.2 48 106 5.8
access-fannkuch 1.5 62 110 6.1
access-nbody 4 167 138 6.8
access-nsieve 0.8 35 103 5.1
bitops-3bit-bits-in-byte 0.8 20 94 4.6
bitops-bits-in-byte 0.4 20 93 4.5
bitops-bitwise-and 1.5 4 90 4.1
bitops-nsieve-bits 0.8 35 100 5.2
controlflow-recursive 0.6 23 101 5
crypto-aes 16.7 412 268 11.8
crypto-md5 9.6 274 216 9.2
crypto-sha1 6.3 212 147 7.9
date-format-tofte 32.6 285 176 6.2
date-format-xparb 12 410 195 6.6
math-cordic 2.7 74 103 5.5
math-partial-sums 1.8 36 108 6
math-spectral-norm 1 48 105 5.8
mont 3.3 117 126 6.6
regexp-dna 105.7 1708 103 5.1
string-fasta 2 85 113 6.3
string-tagcloud 8.4 233 153 8.4
string-unpack-code 163.2 60 141 4.4

V8 size (KB) size (LOC) time (ms) mem (MB)
crypto 46.7 1698 4710 24.1
deltablue 25 880 648 13
earley-boyer 190.1 4684 3735 36.8
raytrace 27.3 904 2923 14.2
raytrace inline 27.7 904 467 14.8
regexp 108.6 1761 838 19.1
richards 15.3 539 190 6.8
splay 10.4 394 163 4.7

Table 8.2: Type-inference performance results

98 CHAPTER 8. EVALUATION

Function name Inferred type
Cipher [num], [[num]] → [num]

SubBytes [[num]], num → [[num]]

ShiftRows [[num]], num → [[num]]

MixColumns [[num]], num → [[num]]

AddRoundKey [[num]], [[num]], num, num → [[num]]

KeyExpansion [num] → [[num]]

SubWord [num] → [num]

RotWord [num] → [num]

AESEncryptCtr str, str, num → str

AESDecryptCtr str, str, num → str

escCtrlChars str → str

unescCtrlChars str → str

encodeBase64 any → str

decodeBase64 any → str

encodeUTF8 any → any

decodeUTF8 str → str

byteArrayToHexStr any → str

Table 8.3: Types for the top-level functions in crypto-aes

array of numbers and [[num]] for an array of arrays of numbers. For the

functions up to unescCtrlChars, we find the exact type. The remaining

functions are dead code, so the analysis assumes that their arguments can

have any type. Even so, it is able to pick up their return types correctly. For

DecodeUTF8 we can also find the input type, because it is called with a string

from decodeBase64.

Last, it is worth mentioning how the choice of abstraction for objects

impacts the analysis. DoctorJS currently does no heap specialization, i.e.,
all concrete objects allocated at the same program point are approximated

by one abstract object. In the V8 raytrace benchmark, the creation of many

different objects goes through the same wrapper:

var Class = {

create: function () {

return function () {

this.initialize.apply(this , arguments);

}

}

}

8.2. JAVASCRIPT 99

There is a call to Class.create in 14 program points. The call returns a

function object which acts as a constructor, but delegates all the work to the

appropriate initialize function. Since we model objects without context

in the heap, we create one abstract object for the returned function. As a

result, many different places modify the prototype property of the same

function and we get spurious flows. With one level of context sensitivity

for objects, we would have 14 different functions that do not get conflated.

In fact, when we inlined the result of the call in the 14 sites and reran the

analysis, there was a 6.3× speed-up (see raytrace inline).

8.2.2 Analysis of Firefox add-ons

Besides type inference, we also used DoctorJS to analyze all Firefox add-

ons, as part of the Electrolysis project at Mozilla. Electrolysis was a proposal

for changing the architecture of Firefox.3 Among other things, Electrolysis

changes how a Firefox add-on and a web page interact; an add-on can only

interact with the web page through a restricted API.

When considering the pros and cons of Electrolysis, Mozilla wanted to

know how often add-ons interact with a web page in ways that would no

longer be possible with Electrolysis. Each such interaction is code that would

have to be rewritten. One way to estimate the extent of the rewrite is with

a static analysis. We used DoctorJS to analyze all add-ons and look for

patterns that would be forbidden with Electrolysis.

Chrome and content elements In a browser environment, objects are spec-

ified using the Document Object Model (DOM). At runtime, objects form a

tree called the DOM tree.

The HTML elements of a web page are a subtree of the DOM tree. Most

web pages also have JavaScript code that manipulates the elements. These

elements and the associated JavaScript are loaded dynamically from the web

when a user visits a web page. We refer to the objects and the JavaScript

code that are part of a web page as content.
Part of the Firefox user interface also consists of DOM objects, which are

manipulated using JavaScript. The code of an add-on is written in JavaScript

and can interact with the browser UI elements and the objects of a web

page. We refer to the objects in the browser UI and the JavaScript code of
3wiki.mozilla.org/Electrolysis

100 CHAPTER 8. EVALUATION

the browser and the add-on as chrome. Unlike content code, chrome code is

installed locally on the user’s machine.

With the current Firefox architecture, chrome and content interact freely.

We are interested in two patterns that are not possible with Electrolysis.

• References from chrome to content: Currently, a property of a chrome

object can point to a content object. With Electrolysis, chrome objects

cannot directly reference content objects.

• Listening for content events: When some interesting change in the state

of the system happens, such as a key press or a mouse click, the browser

creates an event. A listener is a function that is attached to an element

on the DOM tree in order to handle an event. An event may have a

target element, e.g., a user clicks on a specific part of a page. If there

is no listener attached to the target element, the event may bubble up

the DOM tree until a listener is found.4 Currently, a content-generated

event can bubble up past the root of the content subtree and be handled

by a listener attached to a chrome element. With Electrolysis, a listener

on a chrome element cannot listen for content events, and chrome code

cannot attach listeners to content elements.

The details of these decisions will not concern us here. The rationale

is that the separation between chrome and content could increase perfor-

mance on multicore machines and also increase protection from malicious

web pages.

Searching for violations of the Electrolysis API in Firefox add-ons We set

out to analyze all add-ons and find occurrences of the two aforementioned

patterns in the code. There are two obstacles in doing this analysis. First,

the DOM specification is huge, so a complete modeling of the DOM in the

analysis was out of the question for us. Second, we cannot have a full picture

of the execution. In reality, the add-on is installed on a user’s browser and

the user loads arbitrary web pages and interacts with them, causing events

to fire. Instead, we have the add-on code but we do not know anything

about the web pages or the user’s actions. Both these difficulties can be

overcome.

We created a small DOM mockup that is expressive enough for our pur-

4Not all events bubble. For more details, see en.wikipedia.org/wiki/DOM events.

8.2. JAVASCRIPT 101

Chr Con

document

opener

window

firstChild

parentNode

getElementById()

createElement()

content

contentWindow

contentDocument

defaultView

document

firstChild

parentNode

getElementById()

createElement()

Figure 8.1: DOM mockup

poses. We approximate all chrome objects by a single object Chr and all

content objects by a single object Con.

We cataloged the most commonly used properties and methods and added

them to Chr and Con. Fig. 8.1 shows some of the properties and methods

we model. In the browser, the global object is window, which is a chrome

object, so Chr is the global object in the analysis. Hence, the global vari-

ables are properties of Chr . For example, Chr has properties window and

opener that point back to Chr and properties content and contentWindow

that point to Con.

We added about a dozen well-known properties and methods to Chr and

Con; there are numerous properties that we do not model. Suppose that

during the analysis we find an expression obj.p and obj evaluates to either

Chr or Con and does not have a property named p. It is possible that p does

not exist and we should return undefined. But most likely, p is not there

because it is one of the properties that we do not model. We assume the

latter and return whatever obj evaluates to as the result of the expression.

This simple unsound heuristic is crucial because it allows us to ignore a large

number of properties and still get useful results from the analysis; we only

need to know about the small number of properties that can take us from

Chr to Con.

During the analysis, when we find a property access where the target

object can evaluate to Chr and the referenced property can point to Con,

we mark it as a violation.

The analysis does not simulate the firing of events. When we see a lis-

tener l being attached to some object, we assume that the event for which l

listens will fire. Attaching a listener happens by calling addEventListener.

A call to this function has the general form:

102 CHAPTER 8. EVALUATION

obj.addEventListener(evttype, listener, capture, untrusted)

where obj is the element to which the listener will be attached, evttype

is a string that is the name of the event and listener is the function that

handles the event. (To avoid getting sidetracked into the details of the event

model, we do not discuss capture and untrusted here.)

We split events into three categories: XUL events (specific to the Firefox

UI), non-XUL events that bubble and non-XUL events that do not bubble.

The name of an event determines which category the event belongs to. XUL

events cannot be generated from content. The other two kinds of events can

be generated both from chrome and content.

During the analysis, every time we see a call to addEventListener, we

use the following criteria to decide whether to flag it as a violation of Elec-

trolysis. If evttype is a XUL event, the call is safe. Otherwise, we look at

obj. If obj can evaluate to Con, the code of the add-on is attaching a listener

to a content object, so we mark this as unsafe. If obj evaluates to Chr and

evttype is an event that does not bubble, the call is safe. Last, if obj eval-

uates to Chr and evttype is an event that bubbles then the call is unsafe,

because we are attaching a listener to chrome that may handle an event that

originated from content.

Benchmark results A Firefox add-on consists of several files that contain

code, user interface markup, documentation, etc. The add-on is compressed

as an xpi file and distributed. David Herman of Mozilla wrote a program to

unpack an xpi and collect the JavaScript code from all files into a single file.

This file is the input to DoctorJS.

We analyzed 6997 add-ons and found a total of 40138 violations of the

Electrolysis API, an average of about 6 violations per add-on. From these

results, we concluded that Electrolysis requires extensive rewrites to add-

ons code. For this and other reasons, Mozilla decided to not go through

with Electrolysis.

Table 8.4 shows some aggregate statistics. We group the add-ons into 13

categories depending on their size in kilobytes. Many add-ons use JavaScript

libraries such as jQuery that are minified in the source code and line breaks

are removed. Therefore, lines of code are not a precise indicator of size.

The add-ons vary widely in size, but most add-ons are small. We set a

timeout of 5 minutes and if the analysis does not finish by that time, we stop

8.2. JAVASCRIPT 103

size (KB) #add-ons #timeouts time (ms) mem (MB) viol
2 1064 0 7 1.2 0
4 873 0 22 2.1 0
8 1063 0 44 1.8 0

16 1092 0 93 3.7 1
32 818 0 189 6.7 2
64 717 66 414 14.2 4

128 485 120 947 20.5 5
256 335 116 2122 27.9 9
512 427 301 9233 34.6 4

1024 93 69 8231 77.2 8
2048 24 7 68035 249.4 57
4096 4 4 — 435.8 20
8192 2 2 — 592.4 3

Table 8.4: Aggregate results for all add-ons

<1s <2s <3s <4s <5s <10s <20s <60s >60s ∞
128KB 195 118 21 9 5 8 4 2 3 120
256KB 12 89 50 20 13 15 9 6 5 116

Table 8.5: Distribution of running times for the 128KB and 256KB add-ons

it. The analysis times out for 685 add-ons (9.8%). When the analysis times

out for an add-on, we record the violations found up to that point.

We report how many add-ons fall in each size category. For each category,

we report the number of add-ons that time out, the median running time for

the add-ons that do not time out, the median memory consumption and the

median number of violations.

For add-ons in the same size category, the running time of the analysis

varies a lot. Table 8.5 shows a distribution of the running times for add-ons

of size 128KB and 256KB. Most 128KB add-ons finish in under a second, but

3 add-ons take more than one minute. The majority of the 256KB add-ons

finish in under 3 seconds, but 5 add-ons take more than a minute.

Table 8.6 shows the analysis results for some popular add-ons (median

values for 3 runs, no significant variation). We see that DoctorJS analyzes

some large add-ons such as Firebug quickly and without using much mem-

ory. We manually inspected the reported violations for these add-ons to see

if the analysis gives accurate results. Of the 340 reported violations, 303 are

true violations and 37 are false positives.

104 CHAPTER 8. EVALUATION

KB LOC time (ms) mem (MB) viol.
Commentblocker 26 762 135 5.5 23
Flashblock 33 936 183 8.7 2
Imtranslator 49 1335 293 3.4 6
Flagfox 92 2056 556 5.1 5
Greasemonkey 193 5764 1103 23.9 10
Flashgot 316 9730 5323 24.5 12
Video download helper 409 12916 2997 57.6 6
Web developer 812 20493 5993 33.6 86
FoxyTunes 1179 35200 8401 109.8 49
ReminderFox 1296 35980 194050 72.8 1
Firebug 2598 80480 30696 271.8 140

Table 8.6: Analysis results for some Firefox add-ons

Overall, our experiments with DoctorJS support the ideas in Big CFA2.

Call/return matching and the stack/heap distinction reduce spurious flows,

as indicated by the low number of false positives. By not caching intermedi-

ate results, the analysis uses little memory.

Interestingly, after examining some of the add-ons that time out, we

found that the main remaining cause of slowness in DoctorJS is unrelated

to the pushdown abstraction; it is related to the abstract heap. We represent

the heap as a finite map from addresses to abstract values. This abstraction

works well most of the time, but it can be problematic when several ad-

dresses point to the same abstract value. This happens often if the heap of

the analyzed program is highly connected. The following contrived example

illustrates this phenomenon.

function f(u) {

w = u;

x = w;

y = x;

z = y;

}

We have heap references to w, x, y, z. Initially, these variables are bound to

∅ in the heap. Suppose that f can be called with n different abstract objects.

These objects will flow through u to all four variables. Every time the heap

binding of one of these variables grows, the timestamp increases. Thus, the

8.2. JAVASCRIPT 105

timestamp increases 4n times total. Every timestamp increase creates work

for the analysis because it deprecates summaries and causes functions to be

reanalyzed.

Instead of 4n increases, we only need n, one for each abstract object that

flows to w, because it is guaranteed to also flow to x, y and z. But because we

represent the heap as a table from addresses to values, the bindings heap[w],

heap[x], heap[y] and heap[z] are totally independent; we do not see the

invariant

heap[w] ⊆ heap[x] ⊆ heap[y] ⊆ heap[z]

If we represent the heap as a graph of points-to relations, like constraint-

based analyses do, we can express this invariant and increase the timestamp

only n times.

CHAPTER 9

Related work

9.1 Program analyses for first-order languages

The earliest pushdown program analysis for first-order languages is Sharir

and Pnueli’s functional approach [59]. In its general form, the analysis has

two stages. First, they compute a transfer function for each procedure f

by composing the transfer functions of its basic blocks. The second stage is

an ordinary fixpoint computation over the control-flow graph of the whole

program; at every call site of f , they use the previously computed transfer

function to simulate the effect of the call. The major difficulty with the

functional approach is how to represent the transfer functions when the

dataflow lattice is infinite. In this case, a table representation is impossible

and there is no general way of finding when a function admits a symbolic

representation. In the special case when the lattice is finite, they give an

iterative algorithm, which is the first summary-based analysis (pg. 207).

The functional approach, as proposed by Sharir and Pnueli, works for

procedures without arguments. Knoop and Steffen extended it for proce-

dures that take arguments and have local-variable declarations [35]. They

use a stack to analyze different calls in different environments. Like CFA2,

they give a terminating algorithm that remembers only a finite part of the

stack without losing precision. Their algorithm uses the two-stage approach

of Sharir and Pnueli, not the one-stage iterative summarization. Since their

work is for first-order languages, they do not have to deal with closures and

do not make a distinction between stack and heap references.

Reps et al. [52] showed how to perform pushdown analysis efficiently

for a certain class of dataflow problems. When the dataflow facts are sets

and the transfer functions are distributive, the transfer functions admit a

107

108 CHAPTER 9. RELATED WORK

compact representation and the analysis problem can be turned into a graph

reachability problem. Their tabulation algorithm solves the reachability prob-

lem without merging any information from distinct call sites of the same

procedure. The CFA2 algorithm (fig. 4.8) uses the terminology of Reps et
al., but its mechanics are closer to Sharir and Pnueli’s summarization.

Debray and Proebsting [16] used ideas from parsing theory to design an

interprocedural analysis for first-order programs with tail calls. They de-

scribe control-flow with a context-free grammar. In the monovariant version

of their analysis, the FOLLOW set of a procedure represents its possible re-

turn points. The polyvariant version uses one level of context, like 1CFA. In

this version, the LR(1) items show return-point information. The authors do

not discuss how to handle tail calls in an analysis with unbounded call/re-

turn matching.

9.2 Polyvariant analyses for object-oriented

languages

In this section, we discuss analyses for object-oriented languages except

JavaScript. We discuss JavaScript analyses in section 9.5.

There is little work on pushdown analyses for object-oriented languages.

Most work has focused on finite-state analyses for Java. The Paddle and

Doop frameworks represent the state of the art in Java points-to analysis.

The Paddle framework of Lhoták and Hendren uses BDDs to represent

analysis results compactly [40]. The authors used Paddle for an extensive

comparison of different options for polyvariance. They found that object

sensitivity [44] is a better choice of context than call strings and that the

1-object-sensitive analysis with heap specialization (abbrev. 1H-obj) offers

the best trade-off between precision and scalability. Using 1H-obj, they were

able to analyze programs up to 131KLOC, with running times ranging from

a few minutes to a half hour. They also found that increasing the call-string

size does not increase precision much, but greatly increases the state space,

which is consistent with our Scheme experiments (sec. 8.1).

The Doop framework of Bravenboer and Smaragdakis allows declarative

specification of analyses using Datalog [7]. The authors suggest an optimiza-

tion methodology for Datalog, which achieves order-of-magnitude speed-ups

9.2. POLYVARIANT ANALYSES FOR OBJECT-ORIENTED LANGUAGES 109

over previous approaches. Bravenboer and Smaragdakis compared Doop to

Paddle on the DaCapo benchmarks, the largest of which is 131KLOC [40].

Interestingly, they state that these benchmarks are the largest programs any-

one has ever applied a polyvariant points-to analysis on. They found Doop to

be up to 15 times faster than Paddle. On the other hand, Paddle represents

large dataflow relations with a lot of redundancy very compactly, in a few

megabytes, whereas Doop may need gigabytes for the same relations. The

experiments with Doop confirmed Lhoták and Hendren’s finding that object

sensitivity is a preferable abstraction to call strings.

Sridharan and Bod́ık’s demand-driven analysis for Java matches reads

with writes to object fields selectively, by using refinement [66]. The idea is

to start with an approximate but sound solution and make it more precise

in parts of the program that matter by using pushdown techniques. The

analysis also refines calls and returns, but approximates in the presence of

recursion. In their experiments, their analysis was able to prove the safety

of 61% more casts than 1H-obj.

Agesen developed the Cartesian Product Algorithm (CPA) for type infer-

ence of Self [1]. CPA analyzes each function once for every combination of

abstract values that can flow to the formal parameters. Thus, CPA uses ar-

gument tuples as an abstraction of context. By using summaries, CFA2 also

distinguishes calls that happen with different arguments. However, CFA2

uses sets as abstract values and does not compute the Cartesian product. It

would be interesting to combine CPA and CFA2 in a pushdown analysis that

creates one summary for every element of the Cartesian product.

We believe that Java and object-oriented languages in general would

benefit from a pushdown analysis like CFA2. First, CFA2 distinguishes calls

to the same function with different arguments. This generalizes object sen-

sitivity, which distinguishes calls depending only on the 0th argument, i.e.,
the receiver object. Second, pushdown analyses capture the control flow

induced by calls and returns more naturally than finite-state analyses, espe-

cially in the presence of recursion. Past comparisons have found pushdown

analyses to be more precise than finite-state analyses [52, 66]. Our Scheme

experiments support this finding (sec. 8.1). Last, our experiments with Doc-

torJS show that the increased precision of CFA2 is attainable in practice:

DoctorJS scales decently to large programs, even with our suboptimal rep-

resentation of the abstract heap (sec. 8.2.2).

110 CHAPTER 9. RELATED WORK

9.3 Polyvariant analyses for functional

languages

In his dissertation, Might proposed finite-state analyses to solve the environ-

ment problem [42]. These analyses are based on a reformulation of kCFA

using the operational semantics of a CPS λ-calculus. We find the operational

version of kCFA convenient to work with and simpler than Shivers’s original

denotational formulation [61]. This is why we also use CPS and operational

semantics for CFA2. Might’s first solution to the environment problem, µCFA,

counts how many times a variable is bound during the analysis in order to

show equality of environments. The second solution, ∆CFA, compares the

environments of abstract states by looking at stack changes between those

states. ∆CFA uses “frame strings” to track stack motion. Frame strings can

describe various sorts of control transfer: recursive call, tail call, return,

primitive application and exotic stack changes caused by first-class control

operators. However, the expressiveness of ∆CFA is hampered by using a

finite-state abstraction. It is possible that frame strings could be combined

with a pushdown abstraction to boost precision of ∆CFA-based analyses.

Mossin [45] created the first analysis with unbounded call/return match-

ing for typed functional languages. It is a type-based flow analysis, which

uses polymorphic subtyping for polyvariance. The input to the analysis is a

program p in the simply-typed λ-calculus with recursion. First, the analysis

annotates the types in p with labels. Then, it computes flow information

by assigning labeled types to each expression in p. Thus, flow analysis is

reduced to a type-inference problem. The annotated type system uses let-

polymorphism. As a result, it can distinguish flows to different references of

let- and letrec-bound variables. In the following program, it finds that n2 is

a constant.

(let* ((id (λ (x) x))

(n1 (id 1))

(n2 (id 2)))

(+ n1 n2))

However, the type system merges flows to different references of λ-bound

variables. For instance, it cannot find that n2 is a constant in the app/id

example (see fig. 3.1). Mossin’s algorithm runs in time O(n8).

9.4. ANALYSES EMPLOYING BIG-STEP SEMANTICS 111

Rehof and Fähndrich [50, 19] used CFL reachability in an analysis that

runs in cubic time and has the same precision as Mossin’s. They also ex-

tended the analysis to handle polymorphism in the target language. Around

the same time, Gustavsson and Svenningsson [26] formulated a cubic ver-

sion of Mossin’s analysis without using CFL reachability. Their work does

not deal with polymorphism in the target language.

Recently, Earl et al. created PDCFA, a pushdown analysis that does not

use frames [17]. Rather, it allocates all bindings in the heap with context,

like kCFA. For k = 0, PDCFA runs in time O(n6). In CFA2, it is possible to

disable the use of frames by classifying each reference as a heap reference.

The resulting analysis runs in polynomial time and has the same precision as

PDCFA for k = 0. We conjecture that this variant is not a viable alternative

in practice because of the significant loss in precision.

Kobayashi proposed a way to statically verify properties of functional

programs using model-checking [36, 37]. He models a program by a higher-

order recursion scheme G, expresses the property of interest in the modal

µ-calculus and checks if the infinite tree generated by G satisfies the prop-

erty. This technique can be used for flow analysis, since flow analysis can be

encoded as a model-checking problem, and it gives precise results. However,

it only applies to pure, typed languages and it is computationally expensive.

9.4 Analyses employing big-step semantics

Wand and Steckler used flow analysis to prove the correctness of closure con-

version [72]. The problem they tackle is that functional language compilers

have an array of options for compiling lambdas: a lambda may never need

to be closed over, or it may need a closure for some or all of its free variables.

The authors use flow analysis to find all possible call sites for a procedure

and check that each call site uses the calling protocol expected by the pro-

cedure. They use big-step semantics for their standard and non-standard

concrete semantics. However, they perform flow analysis using constraint

solving, not by abstract interpretation of the operational semantics.

The first analysis for functional languages based on abstract interpreta-

tion of big-step semantics was Serrano’s formulation of 0CFA [58]. Serrano

used 0CFA for optimizations in the Bigloo Scheme compiler. The analysis

works on the direct-style AST and does not require labeling each subex-

112 CHAPTER 9. RELATED WORK

pression in the program. Like Big CFA2, recursion in the analyzed program

can cause non-termination in the analyzer. To avoid that, the analysis stops

when it sees a duplicate function entry. Reppy’s modular analysis for ML is

based on Serrano’s [51].

The most closely related work to Big CFA2 is an abstract-interpretation-

based analysis for logic programs by Muthukumar and Hermenegildo [46].

Their analysis has similarities to Big CFA2, but in a more restricted set-

ting, without higher-order functions and mutation. It uses call/success pairs,

which are analogous to summaries. It is implemented recursively, so it uses

the runtime stack to find return points quickly. For recursive predicates, the

analysis avoids non-termination by doing a fixpoint computation.

Navas et al. [47, 41] showed how to translate Java bytecode to a Horn-

clause-based intermediate representation, in order to apply Muthukumar

and Hermenegildo’s analysis to Java programs. The resulting analysis has

several limitations compared to Big CFA2. Since the IR has no state, they

model state using store-passing style; each Java statement s becomes a

clause that takes as input all formal parameters and local variables of the

method s appears in. Also, the translation uses type information, so it

does not generalize gracefully to dynamic languages. First, virtual calls are

translated away. Every virtual call is translated to several clauses, one for

each method that can be called. This set of methods is approximated using

class-hierarchy analysis. Second, the translation uses type information from

method signatures to find which exceptions can be thrown, so it cannot han-

dle runtime exceptions in Java (or exceptions in dynamic languages). Last,

the analysis handles recursion in an ad-hoc way. It differentiates between

recursion in a single method and mutually-recursive methods. For the latter,

it requires recording dependencies between methods and tagging analysis

results as “complete” or “approximate.” In contrast, Big CFA2 treats all in-

stances of recursion uniformly, including recursion that is not syntactically

apparent in the source code.

9.5 JavaScript analyses

Guha et al. created a flow analysis for JavaScript for intrusion detection [25].

A writer of a client-side application can run the analysis to extract a model

of expected behavior of the client, as seen from the server. The analysis uses

9.5. JAVASCRIPT ANALYSES 113

the model to create a proxy that detects malicious clients, i.e., clients whose

messages do not conform to the model. The authors use uniform kCFA [49]

for the flow analysis part of their tool. Since the focus of this work is security,

they do not describe the flow analysis aspect in detail. For example, they do

not mention how they extend uniform kCFA to handle JavaScript objects,

whether they model objects with context in the heap, the call-string length

used in their experiments, etc. They do however say that the analysis tracks

string literals and models string concatenation. The analysis can take several

minutes for a few thousand lines of code. Memory requirements are not

discussed.

Gatekeeper is a tool by Guarnieri and Livshits that uses flow analysis

to check if JavaScript programs conform to certain security and reliabil-

ity policies [24]. They express the flow-analysis relations in Datalog and

use bddbddb [73] to compute the relations. Gatekeeper performs a whole-

program analysis, so it disallows constructs that inject code at runtime such

as eval and the Function constructor. It also disallows with. Guarnieri and

Livshits define a large subset of JavaScript, called JavaScriptSAFE, for which

their analysis is sound. If the analysis finds a program to not belong in

JavaScriptSAFE, it attempts to insert runtime checks that enforce the policy.

The analysis gives up on some programs because it cannot ensure that they

follow the policy, even with runtime checks. Gatekeeper analyzes programs

of similar size to the V8 benchmarks in a few seconds. Memory usage is not

reported. Regarding the characteristics of the analysis, the authors do not

model operations on scalars (not needed for the security policies of inter-

est), and do not discuss deletion of properties. Also, the analysis does not

keep track of the order of objects in the prototype chain. Objects are mod-

eled by allocation site, without context. As far as we can tell, the analysis is

monovariant.

Jensen et al. created a flow analysis for JavaScript type inference called

TAJS [31, 32]. Their work draws inspiration from Thiemann and Heideg-

ger’s type systems [69, 28]. TAJS is sound and handles all of core JavaScript

except eval. The authors go to great lengths to faithfully model JavaScript,

and ensure soundness while maintaining precision. Unlike DoctorJS, TAJS

uses sophisticated lattices for numbers and strings. It can also mark prop-

erties as “maybe there” to do property deletion soundly (see sec. 7.2). Re-

cently, the authors extended the analysis to the DOM [30]. They model the

114 CHAPTER 9. RELATED WORK

more commonly used parts of the DOM, but not all of it. For events, they

do not track where listeners are attached in the DOM tree and do not model

the capture and bubbling phases of event propagation. Since they do not

know the order in which events will be fired, they analyze the listeners in a

random order (but the load listeners before all others).

Algorithmically, TAJS is a descendant of the functional approach, like

the iterative CFA2. CFA2 analyzes two calls to a function separately if the

arguments differ, and creates two summaries. TAJS is more approximate, it

separates the calls based only on the value of the receiver object. TAJS does

not use a global heap with timestamps, every state has its own abstract heap.

Objects are abstracted by allocation site without context, but TAJS employs a

recency abstraction to increase precision [5]. To mitigate constantly copying

heaps from one state to the other, the authors use a technique which they

call “lazy propagation.”

Jensen et al. implemented TAJS in Java and used it to find type-related

bugs in JavaScript programs or prove the absence of them. Their results

show that TAJS is precise but it does not scale. For example, it takes 136.7sec

and 140.5MB for the V8 deltablue benchmark. For the SunSpider 3d-raytrace

benchmark, it takes 8.2sec and 10.1MB (cf. table 8.2). With the DOM exten-

sions, the largest program they analyzed is 2905LOC and TAJS takes 57.1sec.

One justification for the performance of TAJS is that in the speed-precision-

soundness trade-off the authors favored precision and soundness (cf. ch. 7).

Another reason is the choice of not using a single global heap for all states.

We believe that using the whole argument tuple for summaries has a bigger

impact on precision than using one heap per state and is cheaper to imple-

ment.

CHAPTER 10

Future work

Polyvariance for heap-allocated data

Stack lookups make CFA2 polyvariant because different calls to the same

function are analyzed in different environments. However, we allocate data

in the heap without context, so CFA2 is monovariant in the heap.

CFA2 is strictly more precise than 0CFA because of stack lookups. For

k > 0, CFA2 and kCFA are incomparably precise. In section 3.3.3, we saw

an example that confuses kCFA for any k by repeated η-expansion; CFA2 is

precise because there are no heap references. On the other hand, in the

program

(let* ((f (λ (x) (λ () x)))

(n1 ((f 1)))

(n2 ((f 2)))

(+ n1 n2)))

CFA2 finds that n2 is bound to {1, 2}, but 1CFA finds the precise answer

because f is called from two different call sites.

It is simple to extend CFA2 with call-strings polyvariance in the heap and

get a family of analysis, CFA2.k. Then, any instance of CFA2.k would be

strictly more precise than the corresponding instance of kCFA. However, we

have argued that call strings are not a good choice of context, so we do not

believe that this construction would have practical utility.

The use of stack references and the treatment of calls and returns in CFA2

are orthogonal to the choice of context in the heap. Currently, DoctorJS

abstracts objects by allocation site, but we would like to experiment with

more precise options from the literature.

115

116 CHAPTER 10. FUTURE WORK

Better summaries

CFA2 creates summaries in a conservative manner. Suppose that during the

analysis we find a call to a function f with argument a and we already have

a summary for f with a. If the heap has changed since the creation of the

summary, we reanalyze. However, the changes to the heap may be in parts

that f never touches. In this case, it is safe to reuse the summary.

One way to increase summary reuse is to identify functions that never

touch the heap at all and reuse summaries for these functions. Note that a

pure function may still touch the heap if its body contains a heap reference.

Also, a non-pure function may not touch the heap if the side effects are to

stack variables only.

A more fine-grained solution, but potentially harder to implement, is

to track which parts of the heap are relevant for each function and allow

summary reuse when the changes in the heap do not affect the relevant

parts. The symbolic analysis of Chandra et al. uses this approach [8]. Lazy

propagation in TAJS is also in this spirit [32].

It is plausible that we can use these ideas to increase summary reuse and

speed up DoctorJS. However, it is also likely that the overhead from tracking

the relevant parts of the heap for each function is bigger than the gain from

the summary reuse. Avoiding reanalysis is more crucial in TAJS than in CFA2

because TAJS uses one heap per state.

First-class control

The algorithm for CFA2 with first-class control is not complete, so we lose

precision when going from abstract to local semantics (sec. 5.3.3). An inter-

esting question is whether incompleteness can be avoided. We would like to

find a complete algorithm or prove that the abstract semantics corresponds

to a machine whose reachability is not decidable.

Big CFA2 does not handle first-class control, so DoctorJS currently mod-

els generators in an unsound way. One way to model generators correctly is

to adapt the algorithm of Fig. 5.2 for Big CFA2. This way, generators would

induce spurious control flows because the algorithm merges possibly escap-

ing continuations. But generators, like exceptions, are strictly less powerful

than first-class continuations. Thus, there may be a specialized way to model

117

them correctly in Big CFA2 without loss in precision.

DoctorJS implementation improvements

We have mentioned that DoctorJS abstracts objects by allocation site. This

abstraction is sometimes imprecise, e.g., when objects are created using fac-

tory methods. The raytrace example in section 8.2.1 shows that heap spe-

cialization may improve speed alongside precision. For these reasons, we

want to investigate more precise alternatives for abstracting objects.

Representing the abstract heap as a map from addresses to values causes

the analysis to miss relations between heap-allocated data and do redundant

work (sec. 8.2.2). We want to try a graph-based representation of points-to

relations. With a graph, when a flow set grows, we can propagate the change

to the relevant parts of the heap immediately and do fewer timestamp in-

creases. Naturally, a graph representation raises other issues, such as cycle

elimination [18] and whether or not to add transitive edges [9, 29].

DoctorJS uses one frame to analyze the body of a function flow insensi-

tively. This is fast and precision is good most of the time. However, in some

cases it is important to analyze the branches of an if statement in different

environments, e.g., when the test expression is checking for null. We can

improve precision in these cases by using SSA [27].

Analysis clients

This dissertation shows how to create precise pushdown analysis techniques

for expressive, higher-order languages. We discussed some applications in

chapter 8, but there many more interesting possibilities.

CFA2 is well suited for escape analysis to convert heap allocations to

stack allocations. Besides the optimization benefit, the information from an

escape analysis benefits the flow analysis itself because more data stay in

frames and do not leak in the (less precise) abstract heap.

CFA2 could also improve environment analyses [61, 42]. The use of stack

references is a simple syntactic way to prove that two references are bound

in the same environment. An important application of environment analysis

is optimizing the representation of closures [38, 72, 42].

CFA2 could also help with static debugging, especially in dynamic lan-

118 CHAPTER 10. FUTURE WORK

guages. Current IDEs for dynamic languages offer little debugging support

to programmers. A flow analysis can find many type-related bugs: calling

a function with the wrong number or type of arguments, accessing non-

existent properties of objects, dereferencing null, etc. Type information

provided by DoctorJS can catch many such errors early.

CHAPTER 11

Conclusions

In this dissertation, we have proposed techniques for higher-order flow anal-

ysis with unbounded call/return matching. By modeling calls and returns

faithfully, it becomes possible to overcome the limitations of finite-state anal-

yses. In addition, our analyses are more broadly applicable than previous

pushdown analyses for higher-order languages.

The proposed techniques do not depend on a particular dataflow lat-

tice. As a result, they can be used to improve the precision of any exist-

ing dataflow analysis for higher-order languages. In addition, they are well

suited for environment analysis and stack-based optimizations.

Several independent parameters in CFA2 could be tuned to change pre-

cision and speed: stack filtering, reuse/widening of summaries, flow/path

sensitivity. We would like to perform experiments with various combinations

of these parameters, in order to quantify the effect of each one on precision

and speed, and find combinations that strike a good balance in practice.

Besides the modeling of control flow, the choice of abstraction for heap-

allocated data (closure environments, objects, records, etc.) plays a major

role in a flow analysis. The present work has not addressed this issue. The

proposed techniques are orthogonal to the choice of heap abstraction and

can be combined with existing solutions.

We believe that pushdown models are better suited for higher-order flow

analysis than finite-state models. Our experiments show that call/return

matching can yield precise and fast analyses in practice. Additional experi-

mentation is needed to quantify the benefits of pushdown analyses better. It

would be instructive to measure the precision and speed of CFA2 on several

client optimizations and compare it to kCFA and other finite-state analyses.

119

120 CHAPTER 11. CONCLUSIONS

This way, we can see the precision differences across various clients and

understand which clients benefit the most from a pushdown abstraction.

Our vision is that precise, polyvariant flow analysis should be efficient.

We believe it is possible to consistently analyze programs up to a hundred

thousand lines of code in a few seconds. CFA2 is a step in this direction.

APPENDIX A

Proofs

Lemma. Let ς be a reachable concrete state of the form (. . . , ve, t). Then,

1. For any closure (lam, ρ) ∈ range(ve), it holds that dom(ρ)∩BV (lam) = ∅.
2. If ς is an Eval state (call , ρ, ve, t), then dom(ρ) ∩ BV (call) = ∅.
3. If ς is an Apply , any closure (lam, ρ) in operator or argument position

satisfies dom(ρ) ∩ BV (lam) = ∅.

Proof. We show that the lemma holds for the initial state I(pr). Then, for

each transition ς → ς ′, we assume that ς satisfies the lemma and show that

ς ′ also satisfies it.

Show for I(pr):
I(pr) is a UApply of the form ((pr , ∅), (lam, ∅), halt , ∅, 〈〉). (1) holds because

ve is ∅. (3) holds because both closures have empty environments.

Rule [UEA]:
The [UEA] transition is:

(J(f e q)lK, ρ, ve, t)→ (A(f, ρ, ve),A(e, ρ, ve),A(q, ρ, ve), ve, l :: t)

(1) holds for ς ′ because ve does not change in the transition. The operator

of ς ′ is a closure (lam, ρ′). We must show that dom(ρ′) ∩ BV (lam) = ∅.
If Lam?(f), then lam = f and ρ′ = ρ. Also, we know

dom(ρ) ∩ BV (J(f e q)lK) = ∅
⇒ dom(ρ) ∩ (BV (f) ∪ BV (e) ∪ BV (q)) = ∅
⇒ dom(ρ) ∩ BV (f) = ∅.
If Var ?(f), then (lam, ρ′) ∈ range(ve), so we get the desired result because

ve satisfies (1).

Similarly for π2(ς̂ ′) and π3(ς̂ ′).

121

122 APPENDIX A. PROOFS

Rule [UAE]:
The [UAE] transition is:

(〈J(λl(u k) call)K, ρ〉, d, c, ve, t)→ (call , ρ′, ve ′, t)

ρ′ = ρ[u 7→ t, k 7→ t]

ve ′ = ve[(u, t) 7→ d, (k, t) 7→ c]

To show (1) for ve ′, we must show that d and c do not violate the property.

Let d be (lam1, ρ1). Since ς satisfies (3), we know dom(ρ1) ∩ BV (lam1) = ∅,
which is the desired result. Similarly for c.

Also, we must show that ς ′ satisfies (2). We know {u, k} ∩ BV (call) = ∅
because variable names are unique. Also, from property (3) for ς we know

dom(ρ) ∩ BV (J(λl(u k) call)K) = ∅, which implies dom(ρ) ∩ BV (call) = ∅.
We must show dom(ρ′) ∩ BV (call) = ∅
⇔ (dom(ρ) ∪ {u, k}) ∩ BV (call) = ∅
⇔ (dom(ρ) ∩ BV (call)) ∪ ({u, k} ∩ BV (call)) = ∅
⇔ ∅ ∪ ∅ = ∅.

Other rules:
Similarly for the other two transitions.

A.1 Proofs for CFA2 without first-class control

In this section, we prove theorems 9, 13 and 14 for the stack-filtering se-

mantics. Without stack filtering, the proofs are similar and simpler.

To make it easier for the reader to navigate the structure of the proofs and

understand what facts each theorem or lemma relies on, we show a (directed

Same-level reach.

Corol. 22

Path decomp.

Soundness

Local sim.

Completeness

Stack irrel.

Lemma 27

Lemma 25

Lemma 24

Lemma 4 Simulation Temporal consistency

Figure A.1: Proof dependencies

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 123

acyclic) graph of the dependencies between the proofs in fig. A.1. The graph

has edges only for the immediate dependencies, i.e., when a theorem or

lemma mentions another one in the proof.

Theorem (Simulation).

If ς → ς ′ and |ς|ca v ς̂, then there exists ς̂ ′ such that ς̂ ; ς̂ ′ and |ς ′|ca v ς̂ ′.

Proof. By cases on the concrete transition.

Rule [UEA]:
(J(f e q)lK, ρ, ve, t)→ (proc, d, c, ve, l :: t)

proc = A(f, ρ, ve)

d = A(e, ρ, ve)

c = A(q, ρ, ve)

Let ts = toStack(LV (l), ρ, ve). Since |ς|ca v ς̂, ς̂ is of the form

(J(f e q)lK, st , h), where |ve|ca v h and ts v st .

The abstract transition is

(J(f e q)lK, st , h) ; (f ′, d̂, ĉ, st ′, h)

f ′ ∈ Âu(f, l, st , h)

d̂ = Âu(e, l, st , h)

ĉ = Âk(q, st)

st ′ =


pop(st) Var ?(q)

st Lam?(q) ∧ (H?(l, f) ∨ Lam?(f))

st [f 7→ {f ′}] Lam?(q) ∧ S?(l, f)

ς̂ has many possible successors, one for each lambda in Âu(f, l, st , h). We

must show that one of them is a state ς̂ ′ such that |ς ′|ca v ς̂ ′.

The variable environment and the heap do not change in the transitions, so

for ς ′ and ς̂ ′ we know that |ve|ca v h. We must show π1(proc) = f ′, |d|ca v d̂,

|c|ca v ĉ and ts ′ v st ′, where ts ′ is the stack of |ς ′|ca.
We first show π1(proc) = f ′, by cases on f :

• Lam?(f)

Then, proc = (f, ρ) and f ′ ∈ {f}, so f ′ = f .

• S?(l, f)

Then, proc = ve(f, ρ(f)), a closure of the form (lam, ρ′).

124 APPENDIX A. PROOFS

Since ts(f) = |ve(f, ρ(f))|ca = {lam} and ts v st , we get lam ∈ st(f).

So, we pick f ′ to be lam.

• H?(l, f)

Then, proc = ve(f, ρ(f)), a closure of the form (lam, ρ′).

Since |ve|ca v h and lam ∈ |ve|ca(f), we get lam ∈ h(f).

So, we pick f ′ to be lam.

Showing |d|ca v d̂ is similar. We now show |c|ca v ĉ, by cases on q:

• Lam?(q)

Then, c = (q, ρ) and ĉ = q, so |c|ca v ĉ.

• Var ?(q) and c = ve(q, ρ(q)) = halt

Then, ts(q) = halt . Since ts v st , we get st(q) = halt . Thus, ĉ = halt .

• Var ?(q) and c = ve(q, ρ(q)) = (lam, ρ′)

Similar to the previous case.

It remains to show that ts ′ v st ′. We proceed by cases on q and f :

• Var ?(q) and c = ve(q, ρ(q)) = halt

Then, ts ′ = 〈〉. By ts v st , we know that ts and st have the same size.

Also, st ′ = pop(st), thus st ′ = 〈〉. Therefore, ts ′ v st ′.

• Var ?(q) and c = ve(q, ρ(q)) = (lam, ρ′)

By fig. 4.3, we know that ts ′ = toStack(LV (L(lam)), ρ′, ve) = pop(ts).

Also, st ′ = pop(st). Thus, to show ts ′ v st ′ it suffices to show pop(ts) v
pop(st), which holds because ts v st .

• Lam?(q) ∧ (Lam?(f) ∨ H?(l, f))

Then, ts ′ = ts and st ′ = st , so ts ′ v st ′.

• Lam?(q) ∧ S?(l, f)

By LV (L(q)) = LV (l), we get that ts ′ = ts. Also, proc = ve(f, ρ(f)), a

closure of the form (lam, ρ′). We pick f ′ to be lam. The stack of ς̂ ′ is

st ′ = st [f 7→ {lam}]. Since pop(ts) v pop(st), we only need to show that

the top frames of ts ′ and st ′ are in v. For this, it suffices to show that

ts ′(f) v st ′(f) which holds because ts ′(f) = ts(f) = {lam}.

Rule [UAE]:
(〈J(λl(u k) call)K, ρ〉, d, c, ve, t)→ (call , ρ′, ve ′, t)

ρ′ = ρ[u 7→ t, k 7→ t]

ve ′ = ve[(u, t) 7→ d, (k, t) 7→ c]

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 125

Let ts =

〈〉 c = halt

toStack(LV (L(lam)), ρ1, ve) c = (lam, ρ1)

Since |ς|ca v ς̂, ς̂ is of the form (J(λl(u k) call)K, d̂, ĉ, st , h),

where |d|ca v d̂, |c|ca = ĉ, ts v st and |ve|ca v h.

The abstract transition is

(J(λl(u k) call)K, d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂, k 7→ ĉ], st)

h ′ =

h t [u 7→ d̂] H?(u)

h S?(u)

Let ts ′ be the stack of |ς ′|ca.
From iuλ(call) = λl, we get ts ′ = toStack(LV (l), ρ′, ve ′).

We must show that |ς ′|ca v ς̂ ′, i.e., ts ′ v st ′ and |ve ′|ca v h ′.

We assume that c = (lam, ρ1) and that H?(u) holds, the other cases are

simpler. In this case, |ve ′|ca is the same as |ve|ca except that |ve ′|ca(u) =

|ve|ca(u) t |d|ca. Also, h ′(u) = h(u) t d̂, thus |ve ′|ca v h ′.

We know that ρ′ contains bindings for u and k, and by lemma 4 it does not

bind any variables in BV (call). Since LV (l) \ {u, k} ⊆ BV (call), ρ′ does not

bind any variables in LV (l) \ {u, k}.
Thus, the top frame of ts ′ is [u 7→ |d|ca, k 7→ |c|ca]. The top frame of st ′ is

[u 7→ d̂, k 7→ ĉ], therefore the frames are in v. To complete the proof of ts ′ v
st ′, we must show that pop(ts ′) v pop(st ′)⇔ pop(ts ′) v st ⇐ pop(ts ′) = ts.

We know that pop(ts ′) = toStack(LV (L(lam)), ρ1, ve
′) and

ts = toStack(LV (L(lam)), ρ1, ve). By lemma 6, pop(ts ′) will not contain the

two bindings born at time t because they are younger than all bindings in

ρ1. This implies that pop(ts ′) = ts.

Rule [CEA]:
(J(q e)γK, ρ, ve, t)→ (proc, d, ve, γ :: t)

proc = A(q, ρ, ve)

d = A(e, ρ, ve)

Let ts = toStack(LV (γ), ρ, ve). Since |ς|ca v ς̂, ς̂ is of the form (J(q e)γK, st , h),

where |ve|ca v h and ts v st .

The abstract transition is

126 APPENDIX A. PROOFS

(J(q e)γK, st , h) ; (q′, d̂, st ′, h)

q′ = Âk(q, st)

d̂ = Âu(e, γ, st , h)

st ′ =

pop(st) Var ?(q)

st Lam?(q)

Let ts ′ be the stack of |ς ′|ca. We must show that |ς ′|ca v ς̂ ′, i.e., |proc|ca = q′,

|d|ca v d̂, and ts ′ v st ′.

We first show |proc|ca = q′, by cases on q:

• Lam?(q)

Then, proc = (q, ρ) and q′ = q. Thus, |proc|ca = q′.

• Var ?(q) and proc = ve(q, ρ(q)) = (lam, ρ1)

Since q ∈ LV (γ) we get ts(q) = lam. From this and ts v st , we get

st(q) = lam, which implies q′ = lam, which implies |proc|ca = q′.

• Var ?(q) and proc = ve(q, ρ(q)) = halt

Similar to the previous case.

Showing |d|ca v d̂ is similar, by cases on e.

Last, we show ts ′ v st ′, by cases on q:

• Lam?(q)

Then, st ′ = st . Also, ts ′ = toStack(LV (L(q)), ρ, ve) and LV (L(q)) =

LV (γ). Thus, ts ′ = ts, which implies ts ′ v st ′.

• Var ?(q) and proc = ve(q, ρ(q)) = (lam, ρ1)

Then, ts ′ = toStack(LV (L(lam)), ρ1, ve) = pop(ts) and st ′ = pop(st). To

show ts ′vst ′, it suffices to show pop(ts)vpop(st), which holds by tsvst .

• Var ?(q) and proc = ve(q, ρ(q)) = halt

Similar to the previous case.

Rule [CAE]:
This case requires arguments similar to the previous cases.

Definition 19 (Push Monotonicity).

Let p = ς̂e ;∗ ς̂ where ς̂e is an entry with stack ste. The path p is push

monotonic iff every transition ς̂1 ; ς̂2 satisfies the following property:

If the stack of ς̂1 is ste then the transition can only push the stack,

it cannot pop or modify the top frame.

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 127

Push monotonicity is a property of paths, not of individual transitions. A

push monotonic path can contain transitions that pop, as long as the stack

never shrinks below the stack of the initial state of the path. The following

properties are simple consequences of push monotonicity.

• Every path of the form Î(pr) ;∗ ς̂ is push monotonic.

• Every prefix of a push-monotonic path is push monotonic.

• The stack of the first state in a push-monotonic path is a suffix of the

stack of every other state in the path.

Lemma 20 (Same-level reachability). Let ς̂e = (J(λl(u k) call)K, d̂, ĉ, ste, he),
ς̂ = (. . . , st , h) and p = ς̂e ;

∗ ς̂, where ς̂e ∈ CE ∗p(ς̂).

1. If ς̂ is an entry then st = ste and the continuation argument of ς̂ is ĉ.

2. If ς̂e ∈ (CE ∗p(ς̂) \ {CE p(ς̂)}) then

• there is a frame tf such that st = tf :: ste.

• there is a variable k′ such that tf (k′) = ĉ.

If ς̂e = CE p(ς̂) then

• there is a frame tf such that st = tf :: ste, dom(tf) ⊆ LV (l),

tf (u) v d̂, tf (k) = ĉ.

• if ς̂ is an Êval over a call site labeled ψ then ψ ∈ LL(l).

• if ς̂ is a ĈApply over a lambda labeled γ then γ ∈ LL(l).

3. p is push monotonic.

Note This lemma shows some intuitive properties about a state ς̂ and its

corresponding entry ς̂e. First, since ς̂ is in the procedure whose entry is ς̂e, the

top frame in ς̂ binds variables in this procedure, i.e., dom(tf) ⊆ LV (l). Also,

the return continuation of ς̂ is the continuation passed to ς̂e, i.e., tf (k) = ĉ.

Last, the path from ς̂e to ς̂ is obviously push monotonic, because we must

return in order to get a stack smaller than ste. And if ς̂e is not CE p(ς̂), but is

in CE ∗p(ς̂), similar things hold.

Proof. By induction on the length of p. Note that (3) follows from the form

of the stack in (1) and (2), so we will not prove it separately.

If the length of p is 0 then ς̂ = ς̂e so the lemma trivially holds.

If the length is greater than 0, we take two cases.

128 APPENDIX A. PROOFS

Case 1: ς̂e = CE p(ς̂)

In this case, since ς̂ is not an entry, the second or third branch of def. 11

determine the shape of p.

• p = ς̂e ;
∗ ς̂ ′ ; ς̂

Here, the predecessor ς̂ ′ of ς̂ is not an Exit-Ret, and ς̂e = CE p(ς̂
′). We

proceed by cases on ς̂ ′. Note that ς̂ ′ cannot be a ÛEval because then ς̂ is

an entry, so ς̂ = CE p(ς̂), and our assumption that ς̂e = CE p(ς̂) breaks.

– ς̂ ′ is an inner ĈEval of the form (J(clam e)γK, st ′, h ′).
By IH, st ′ = tf ′ :: ste, dom(tf ′) ⊆ LV (l), tf ′(u) v d̂, tf ′(k) = ĉ and

γ ∈ LL(l). By rule [ĈEA], ς̂ = (clam, d̂′, st ′, h ′). From γ ∈ LL(l) we

get L(clam) ∈ LL(l). Also, the stack is unchanged in the transition

so st satisfies the required properties.

– ς̂ ′ is a ĈApply of the form (J(λγ(u′) call ′)K, d̂′, st ′, h ′).
By IH, st ′ = tf ′ :: ste, dom(tf ′) ⊆ LV (l), tf ′(u) v d̂, tf ′(k) = ĉ,

γ ∈ LL(l).

By rule [ĈAE], ς̂ = (call ′, tf :: ste, h) where tf = tf ′[u′ 7→ d̂′].

From γ ∈ LL(l) we get u′ ∈ LV (l), so dom(tf) = dom(tf ′) ∪ {u′} ⊆
LV (l).

Since variable names are unique, u 6= u′, so tf (u) = tf ′(u) v d̂.

Also, tf (k) = tf ′(k) = ĉ. Last, from γ ∈ LL(l) we get L(call ′) ∈ LL(l).

– ς̂ ′ is a ÛApply

Then, ς̂ ′ = ς̂e because ς̂e = CE p(ς̂
′). This case is simple.

• p = ς̂e ;
+ ς̂2 ; ς̂3 ;

+ ς̂ ′ ; ς̂

Here, the third branch of def. 11 determines the shape of p, so ς̂2 is a

call, ς̂e = CE p(ς̂2), ς̂ ′ is an Exit-Ret and ς̂3 ∈ CE ∗p(ς̂
′).

By IH for ς̂e ;+ ς̂2, we get ς̂2 = (J(f e clam)l2K, tf 2 :: ste, h2), where

dom(tf 2) ⊆ LV (l), tf 2(u) v d̂, tf 2(k) = ĉ and l2 ∈ LL(l).

By rule [ÛEA], we get ς̂3 = (ulam, d̂3, ĉ3, tf 3 :: ste, h2) where

tf 3 =

tf 2[f 7→ {ulam}] S?(l2, f)

tf 2 H?(l2, f) ∨ Lam?(f)

We only show the lemma when S?(l2, f), the other case is simpler.

By IH for ς̂3 ;+ ς̂ ′, ς̂ ′ = (call ′, tf ′ :: (tf 3 :: ste), h
′), where tf ′(k′) = clam.

By rule [ĈEA], we get ς̂ = (clam, d̂′, tf 3 :: ste, h
′).

From l2 ∈ LL(l) we get L(clam) ∈ LL(l).

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 129

Also, S?(l2, f) implies f ∈ LV (l), so dom(tf 3) = dom(tf 2) ∪ {f} ⊆ LV (l).

Last, we take cases depending on whether u and f are the same variable.

If u = f , tf 3(u) = {ulam} v tf 2(u) v d̂. If u 6= f , tf 3(u) = tf 2(u) v d̂.

Case 2: ς̂e 6= CE p(ς̂)

Then, by the second branch of def. 12, p has the form ς̂e ;
+ ς̂1 ; ς̂2 ;∗ ς̂,

where ς̂1 is a tail call, ς̂2 = CE p(ς̂) and ς̂e ∈ CE ∗p(ς̂1).

By IH for ς̂e ;+ ς̂1, the stack of ς̂1 has the form tf 1 :: ste where tf 1(k
′) = ĉ.

By rule [ÛEA], ς̂2 has the form (. . . , . . . , ĉ, ste, . . .).

• If ς̂ is an entry, then ς̂ = ς̂2, so ς̂ has the required form (item 1).

• If ς̂ is not an entry, by IH for ς̂2 ;+ ς̂, there are tf and k′′ such that

st = tf :: ste and tf (k′′) = ĉ. Thus, ς̂ has the required form.

The following lemma states that, in push monotonic paths, the corre-

sponding entries of states are defined (with one exception). Every path

from Î(pr) is push monotonic. Thus, when a program pr executes under the

abstract semantics, each non-final state has a corresponding entry.

Lemma 21 (Path decomposition).

Let ς̂e = (ulam, d̂, ĉ, ste, he) and let path p = ς̂e ;
∗ ς̂ be push-monotonic.

• If ς̂ is a ĈApply of the form (ĉ, . . . , ste, . . .) then CE p(ς̂) is not defined.

• Otherwise, p has the form ς̂e ;
∗ ς̂1 ;

∗ ς̂, where ς̂1 = CE p(ς̂).

Proof. We prove the lemma by induction on the length of p.

The base case is simple. If the length of p is greater than 0, then p has the

form ς̂e ;
∗ ς̂ ′ ; ς̂. We takes cases on ς̂ ′.

ς̂ ′ is an Exit-Ret:
By IH, CE p(ς̂

′) is defined, so CE ∗p(ς̂
′) 6= ∅.

• If ς̂e ∈ CE ∗p(ς̂
′)

By lemma 20 for ς̂e ;+ ς̂ ′ and rule [ĈEA], ς̂ has the form (ĉ, . . . , ste, . . .).

We must show that CE p(ς̂) is not defined. Assume that CE p(ς̂) is defined.

This can only happen if the third item of def. 11 applies. Then, p has the

form ς̂e ;
∗ ς̂1 ;

+ ς̂2 ; ς̂3 ;
+ ς̂ ′ ; ς̂, where ς̂2 is a call, CE p(ς̂2) = ς̂1 and

ς̂3 ∈ CE ∗p(ς̂
′). By lemma 20 for ς̂3 ;+ ς̂ ′, the stack of ς̂3 is ste, and by rule

[ÛEA], the stack of ς̂2 has the same size as ste. But then by lemma 20

130 APPENDIX A. PROOFS

for ς̂1 ;+ ς̂2, the stack of ς̂1 is smaller than ste, which is a contradiction

because p is push monotonic. Therefore, CE p(ς̂) is not defined.

• If ς̂e 6∈ CE ∗p(ς̂
′)

Let ς̂2 be the earliest state in CE ∗p(ς̂
′). Its predecessor ς̂1 is a ÛEval . The

path becomes ς̂e ;+ ς̂1 ; ς̂2 ;
+ ς̂ ′ ; ς̂. By IH, CE p(ς̂1) is defined. Thus,

ς̂1 is not a tail call, because if it was then CE p(ς̂1) would be in CE ∗p(ς̂
′)

and earlier than ς̂2. By the third item of def. 11, CE p(ς̂) = CE p(ς̂1).

ς̂ ′ is a ÛEval:
Then, CE p(ς̂) = ς̂.

ς̂ ′ is none of the above:
Then, ς̂ ′ is an entry, an inner ĈEval or a ĈApply . By IH, CE p(ς̂

′) is defined.

By the second item of def. 11, CE p(ς̂) = CE p(ς̂
′).

Corollary 22. Every path from Î(pr) is push monotonic. Thus, lemmas 20

and 21 imply that the stack of an Êval state in RS is not empty.

Lemma 23 (Local simulation).

Let ς̂ ∈ RS and ς̂ ; ς̂ ′. If ς̂ is not an Exit-Ret then |ς̂ ′|al ∈ succ(|ς̂|al).

Proof. By cases on the abstract transition.

We only show the lemma for [ÛEA], the other cases are similar.

(J(f e q)lK, st , h) ; (ulam, d̂, ĉ, st ′, h)

where ulam ∈ Âu(f, l, st , h), d̂ = Âu(e, l, st , h), ĉ = Âk(q, st) and

st ′ =


pop(st) Var ?(q)

st Lam?(q) ∧ (H?(l, f) ∨ Lam?(f))

st [f 7→ {ulam}] Lam?(q) ∧ S?(l, f)

By corollary 22, st = tf :: st ′′, so |st |al = tf � UVar .

Also, |ς̂|al = (J(f e q)lK, |st |al, h) and |ς̂ ′|al = (ulam, d̂, h).

We must show that ulam ∈ Ãu(f, l, |st |al, h).

If S?(l, f) then ulam ∈ tf (f), so ulam ∈ (tf � UVar)(f) because f ∈ UVar .

If H?(l, f) or Lam?(f), similarly.

Showing that d̂ = Ãu(e, l, |st |al, h) is similar.

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 131

Theorem (Soundness). Let p = Î(pr) ;∗ ς̂. Then, after summarization:

• if ς̂ is not a final state then (|CE p(ς̂)|al, |ς̂|al) ∈ Seen

• if ς̂ is a final state then |ς̂|al ∈ Final

• if ς̂ is an Exit-Ret and ς̂ ′ ∈ CE ∗p(ς̂) then (|ς̂ ′|al, |ς̂|al) ∈ Seen

Proof. By induction on the length of p.

If the length is 0, then Î(pr) ;0 Î(pr). We know that (Ĩ(pr), Ĩ(pr)) ∈ Seen.

If the length is greater than 0, p has the form Î(pr) ;∗ ς̂ ′ ; ς̂.

We take cases on ς̂.

ς̂ is an entry:
Then, CE p(ς̂) = ς̂. Also, ς̂ ′ is a call or a tail call.

By lemma 21, p = Î(pr) ;∗ ς̂1 ;
+ ς̂ ′ ; ς̂, where ς̂1 = CE p(ς̂

′).

By IH, (|ς̂1|al, |ς̂ ′|al) ∈ Seen which means that it has been entered in W and

examined. By lemma 23, |ς̂|al ∈ succ(|ς̂ ′|al) so in line 10 or 22 (|ς̂|al, |ς̂|al) will

be propagated.

ς̂ is a ĈApply but not a final state:
Then, ς̂ = (clam, d̂, st , h) and ς̂ ′ = (J(q e)γ

′
K, st ′, h).

When Lam?(q), ς̂ ′ is an inner ĈEval . This case is simple.

When Var ?(q), ς̂ ′ is an Exit-Ret.

By lemma 21, CE p(ς̂) is defined. By the third item of def. 11, p has the form

Î(pr) ;∗ ς̂1 ;
+ ς̂2 ; ς̂3 ;

+ ς̂ ′ ; ς̂ where ς̂2 is a call, ς̂1 = CE p(ς̂2) = CE p(ς̂)

and ς̂3 ∈ CE ∗p(ς̂
′). We must show that (|ς̂1|al, |ς̂|al) ∈ Seen.

Let st1 be the stack of ς̂1.

The state ς̂2 is a call of the form (J(f2 e2 clam2)
l2K, st2, h2).

By lemma 20, st2 = tf 2 :: st1.

By rule [ÛEA], ς̂3 = (ulam, d̂3, clam2, st3, h2), where st3 = tf 3 :: st1 and

tf 3 =

tf 2 Lam?(f2) ∨ H?(l2, f2)

tf 2[f2 7→ {ulam}] S?(l2, f2)

By lemma 20 for ς̂3 ;+ ς̂ ′, we get st ′ = tf ′ :: st3 and tf ′(q) = clam2.

Then, by rule [ĈEA], clam = clam2, st = st3 and d̂ = Âu(e, γ′, st ′, h).

The above information will become useful when dealing with the local coun-

terparts of the aforementioned states.

By IH, (|ς̂3|al, |ς̂ ′|al) was entered in W (at line 27) and later examined at line

14. Note that ς̂3 6= Î(pr) because ς̂2 is between them, therefore Final will

not be called at line 15.

132 APPENDIX A. PROOFS

Also by IH, (|ς̂1|al, |ς̂2|al) was entered in W and later examined. Lemma 23

implies that |ς̂3|al ∈ succ(|ς̂2|al) so (|ς̂1|al, |ς̂2|al, |ς̂3|al) will go in Callers. We

take cases on whether (|ς̂3|al, |ς̂ ′|al) or (|ς̂1|al, |ς̂2|al) was examined first by the

algorithm.

• (|ς̂1|al, |ς̂2|al) was examined first

Then, when (|ς̂3|al, |ς̂ ′|al) is examined, (|ς̂1|al, |ς̂2|al, |ς̂3|al) is in Callers.

Therefore, at line 18 we call Update(|ς̂1|al, |ς̂2|al, |ς̂3|al, |ς̂ ′|al).

By applying |·|al to the abstract states we get

|ς̂2|al = (J(f2 e2 clam2)
l2K, tf 2, h2)

|ς̂3|al = (ulam, d̂3, h2)

|ς̂ ′|al = (J(q e)γ
′
K, tf ′, h), where tf ′(q) = clam.

From Update’s code, we see that the return value is Ãu(e, γ′, tf ′, h) =

Âu(e, γ′, st ′, h) = d̂. The frame of the return state istf 2 Lam?(f2) ∨ H?(l2, f2)

tf 2[f2 7→ {ulam}] S?(l2, f2)

which is equal to tf 3. The heap at the return state is h. Last, the contin-

uation we are returning to is clam. Thus, the return state ς̃ is equal to

|ς̂|al, and we call Propagate(|ς̂1|al, |ς̂|al), so (|ς̂1|al, |ς̂|al) will go in Seen.

• (|ς̂3|al, |ς̂ ′|al) was examined first

Then, when (|ς̂1|al, |ς̂2|al) is examined, (|ς̂3|al, |ς̂ ′|al) is in Summary , and at

line 12 we call Update(|ς̂1|al, |ς̂2|al, |ς̂3|al, |ς̂ ′|al). Proceed as above.

ς̂ is a final state:
Then, ς̂ = (halt , d̂, 〈〉, h). We must show that |ς̂|al will be in Final after the

algorithm finishes. By rule [ĈEA], ς̂ ′ = (J(k e)γK, st ′, h), where st ′ = 〈tf ′〉,
tf ′(k) = halt , and d̂ = Âu(e, γ, st ′, h).

By lemma 21, CE ∗p(ς̂
′) 6= ∅. We will show that Î(pr) ∈ CE ∗p(ς̂

′).

(We use the same trick as in the proof of lemma 21.)

Assume that Î(pr) 6∈ CE ∗p(ς̂
′). Let ς̂2 be the earliest state in CE ∗p(ς̂

′). Then,

the path is Î(pr) ;+ ς̂1 ; ς̂2 ;
+ ς̂ ′ ; ς̂ where ς̂1 is a call. By lemma 20 for

ς̂2 ;+ ς̂ ′, the stack of ς̂2 is empty, so by rule [ÛEA], the stack of ς̂1 is empty.

But this is impossible by cor. 22. Thus, Î(pr) ∈ CE ∗p(ς̂
′).

By IH for Î(pr) ;∗ ς̂ ′, we know that (|Î(pr)|al, |ς̂ ′|al) was entered in W and

Summary at some point. When it was examined, the test at line 14 was true

so we called Final(|ς̂ ′|al). Hence, we insert ς̃ = (halt , Ãu(e, γ, tf ′, h), ∅, h) in

Final . But, Ãu(e, γ, tf ′, h) = Âu(e, γ, st ′, h) = d̂, hence ς̃ = |ς̂|al.

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 133

ς̂ is an Exit-Ret:
By lemma 21 for Î(pr) ;∗ ς̂ ′, p has the form Î(pr) ;∗ ς̂1 ;∗ ς̂ ′ ; ς̂,

where ς̂1 = CE p(ς̂
′). But ς̂ ′ is an Âpply state, so by item 2 of def. 11 we get

ς̂1 = CE p(ς̂). By IH, (|ς̂1|al, |ς̂ ′|al) is entered in Seen and W , and examined

at line 6. By lemma 23, |ς̂|al ∈ succ(|ς̂ ′|al) so (|ς̂1|al, |ς̂|al) will be propagated

(line 7) and entered in Seen (line 27).

We need to show that for every ς̂ ′′ ∈ CE ∗p(ς̂), (|ς̂ ′′|al, |ς̂|al) will go in Seen.

If ς̂1 = Î(pr) or the predecessor of ς̂1 is a call, then ς̂1 is the only state in

CE ∗p(ς̂), so we are done.

Otherwise, p has the form Î(pr) ;∗ ς̂ ′′ ;+ ς̂2 ; ς̂1 ;
∗ ς̂ ′ ; ς̂, where ς̂2 is a

tail call and ς̂ ′′ ∈ CE ∗p(ς̂2). The subpath ς̂ ′′ ;+ ς̂2 has the form

ς̂ ′′ ;+ c1 ; e1 ;
+ c2 ; e2 ;

+ . . . ;+ cn ; en ;+ ς̂2, where n > 0, cis are

tail calls, eis are entries and ei = CE p(ci+1).

When n = 0, CE p(ς̂2) = ς̂ ′′. When n > 0, CE p(ς̂2) = en and CE p(c1) = ς̂ ′′.

We assume that n > 0 and show (|ς̂ ′′|al, |ς̂|al) ∈ Seen.

(For n = 0, the proof is simpler.)

First, we show that (|en|al, |ς̂|al) ∈ Seen; we take cases depending on whether

(|en|al, |ς̂2|al) or (|ς̂1|al, |ς̂|al) was processed first.

• (|en|al, |ς̂2|al) was first

By lemma 23, the triple (|en|al, |ς̂2|al, |ς̂1|al) goes in TCallers in line 23.

Then, when (|ς̂1|al, |ς̂|al) is examined, we propagate (|en|al, |ς̂|al) in line 19.

• (|ς̂1|al, |ς̂|al) was first

In line 17, (|ς̂1|al, |ς̂|al) will go in Summary . When (|en|al, |ς̂2|al) is exam-

ined, |ς̂1|al ∈ succ(|ς̂2|al) so in line 24 we propagate (|en|al, |ς̂|al).

By repeating this process n times, we can show that, eventually, for any i the

edge (|ei|al, |ς̂|al) is put in Seen, and the edge (|ς̂ ′′|al, |ς̂|al) also goes in Seen.

ς̂ is none of the above:
ς̂ is an inner ĈEval , a call or a tail call. This case is simple.

The following lemma states that, on an Êval -to-Âpply transition, the

stack below the top frame is irrelevant.

Lemma 24.

• If (J(f e clam)lK, tf :: st , h) ; (ulam, d̂, clam, tf ′ :: st , h) then for any st ′,

(J(f e clam)lK, tf :: st ′, h) ; (ulam, d̂, clam, tf ′ :: st ′, h)

134 APPENDIX A. PROOFS

• If (J(f e k)lK, tf :: st , h) ; (ulam, d̂, ĉ, st , h) then for any st ′,

(J(f e k)lK, tf :: st ′, h) ; (ulam, d̂, ĉ, st ′, h)

• Similarly for rule [ĈEA].

The next lemma states that, on an Âpply-to-Êval transition, the stack is

irrelevant.

Lemma 25.

• If (J(λl(u k) call)K, d̂, ĉ, st , h) ; (call , [u 7→ d̂, k 7→ ĉ] :: st , h ′) then for

any st ′, (J(λl(u k) call)K, d̂, ĉ, st ′, h) ; (call , [u 7→ d̂, k 7→ ĉ] :: st ′, h ′)

• Similarly for rule [ĈAE], where st ′ is any non-empty stack.

When explaining the intuition behind summarization in section 4.3.1, we

mentioned that the return point of a function does not influence reachability

while we are computing inside the function. The next lemma formalizes that

insight. In push monotonic paths, we can replace the stack of the first state

with an arbitrary stack and get a path of the same structure.

Lemma 26 (Stack irrelevance). Let p = ς̂1 ; ς̂2 ; . . . ; ς̂n be push mono-

tonic, where ς̂1 = (ulam, d̂, ĉ, st1, h1) and ς̂n is not a ĈApply of the form

(ĉ, . . . , st1, . . .). The stack of each ς̂i is of the form st ist1.

For an arbitrary stack st ′ and continuation ĉ′, consider the sequence p′ of

states ς̂ ′1 ς̂
′
2 . . . ς̂

′
n where each ς̂ ′i is produced by ς̂i as follows:

• if ς̂i has the form (ulam i, d̂i, ĉ, st1, hi), change ĉ to ĉ′ and st1 to st ′.

• if st1 is a proper suffix of the stack of ς̂i, the latter has the form st i〈fr i〉st1.
Change st1 to st ′ and bind the continuation variable in fr i to ĉ′.

(The map is not total, but it should be defined for all states in p.)

Then,

• for any two states ς̂ ′i and ς̂ ′i+1 in p′, it holds that ς̂ ′i ; ς̂ ′i+1

• the path p′ is push monotonic

• the path structure is preserved, i.e., CE p and CE ∗p relations between

states transfer over to the new path.

Proof. The proof is by induction on the length of p.

The base case is simple.

When the length is greater than 0, p is ς̂1 ;∗ ς̂n−1 ; ς̂n. By IH, the transitions

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 135

in ς̂ ′1 ;∗ ς̂ ′n−1 are valid with respect to the abstract semantics, ς̂ ′1 ;∗ ς̂ ′n−1 is

push monotonic and the path structure is preserved. We must show:

• (ς̂ ′n−1, ς̂
′
n) ∈;

• ς̂ ′1 ;∗ ς̂ ′n is push monotonic.

• if ς̂j = CE p(ς̂n) then ς̂ ′j = CE p(ς̂
′
n).

• if ς̂j ∈ CE ∗p(ς̂n) then ς̂ ′j ∈ CE ∗p(ς̂
′
n).

We take cases on ς̂n−1.

ς̂n−1 is a ÛEval:
ς̂n−1 has the form (J(f e q)lK, st , h). By lemma 21, CE ∗p(ς̂n−1) 6= ∅.
If ς̂1 ∈ CE ∗p(ς̂n−1) then by lemma 20, st has the form tf :: st1 where tf (k) = ĉ

for some variable k.

• q is a variable, so q = k

By rule [ÛEA], ς̂n is (ulamn, d̂n, ĉ, st1, h). With the new continuation ĉ′

and stack st ′, the state ς̂ ′n−1 is (J(f e q)lK, tf [q 7→ ĉ′] :: st ′, h), and it

transitions to (ulamn, d̂n, ĉ
′, st ′, h), which is ς̂ ′n.

Push monotonicity is preserved by this transition.

• q is a lambda and f is a stack reference

By rule [ÛEA], ς̂n is (ulamn, d̂n, q, tf [f 7→ {ulamn}] :: st1, h).

With ĉ′ and st ′, the state ς̂ ′n−1 is (J(f e q)lK, tf [k 7→ ĉ′] :: st ′, h), and its

successor is (ulamn, d̂n, q, tf [k 7→ ĉ′, f 7→ {ulamn}] :: st ′, h), which is ς̂ ′n.

Again, push monotonicity is preserved.

• q is a lambda and f is a heap reference

Similarly.

If ς̂1 6∈ CE ∗p(ς̂n−1) then by lemmas 20 and 21, we can show that st has at

least two more frames than st1. Thus, lemma 24 gives us ς̂ ′n−1 ; ς̂ ′n.

When ς̂n−1 is a call, ς̂ ′n obviously preserves path structure.

When ς̂n−1 is a tail call, ς̂ ′n−1 is also a tail call.

We know CE ∗p(ς̂n) = {ς̂n} ∪ CE ∗p(ς̂n−1) and CE ∗p(ς̂
′
n) = {ς̂ ′n} ∪ CE ∗p(ς̂

′
n−1).

Thus, it suffices to show that if ς̂j ∈ CE ∗p(ς̂n−1) then ς̂ ′j ∈ CE ∗p(ς̂
′
n−1). But that

is true by IH for ς̂1 ;+ ς̂n−1.

ς̂n−1 is an Exit-Ret:
By lemma 21, CE ∗p(ς̂n−1) 6= ∅.
If ς̂1 ∈ CE ∗p(ς̂n−1), then by lemma 20 ς̂n has the form (ĉ, . . . , st1, . . .), which

136 APPENDIX A. PROOFS

we do not allow. Thus, ς̂1 6∈ CE ∗p(ς̂n−1). Let ς̂e be the earliest state in

CE ∗p(ς̂n−1); its predecessor ς̂c is a call.

Using lemmas 20 and 21 we can show that st has at least two more frames

than st1. Lemma 24 gives us ς̂ ′n−1 ; ς̂ ′.

By the third item of def. 11, CE p(ς̂n) = CE p(ς̂c). But by IH, ς̂ ′e ∈ CE ∗p(ς̂n−1),

so def. 11 gives us CE p(ς̂
′
n) = CE p(ς̂

′
c).

Last, we must show that if ς̂j ∈ CE ∗p(ς̂n) then ς̂ ′j ∈ CE ∗p(ς̂
′
n).

Clearly, CE ∗p(ς̂n) = CE ∗p(ς̂c) and CE ∗p(ς̂
′
n) = CE ∗p(ς̂

′
c). Thus, it suffices to show

that if ς̂j ∈ CE ∗p(ς̂c) then ς̂ ′j ∈ CE ∗p(ς̂
′
c), which holds by IH.

ς̂n−1 is an entry:
Then, CE ∗p(ς̂n−1) 6= ∅. If ς̂1 6∈ CE ∗p(ς̂n−1) then by lemmas 20 and 21 we can

show that the stack of ς̂n−1 has at least one more frame than st1.

By lemma 25, we get ς̂ ′n−1 ; ς̂ ′n.

When ς̂1 ∈ CE ∗p(ς̂n−1), the proof is similar to the previous cases.

ς̂n−1 is none of the above:
Then, ς̂n−1 is a ĈApply or an inner ĈEval . Similarly.

Lemma 27. If ς̃ ≈> ς̃ ′ then, for any ς̂ such that ς̃ = |ς̂|al, there exists a state

ς̂ ′ such that ς̂ ; ς̂ ′ and ς̃ ′ = |ς̂ ′|al.

Theorem (Completeness). After summarization:

• For each (ς̃1, ς̃2) in Seen, there exist states ς̂1, ς̂2 ∈ RS such that ς̂1 ;∗ ς̂2

and ς̃1 = |ς̂1|al and ς̃2 = |ς̂2|al and ς̂1 ∈ CE ∗p(ς̂2)

• For each ς̃ in Final , there exists a final state ς̂ ∈ RS such that ς̃ = |ς̂|al

Proof. By induction on the number of iterations. We prove that the algorithm

maintains the following properties for Seen and Final .

1. For each (ς̃1, ς̃2) in Seen, there exist states ς̂1, ς̂2 ∈ RS and path p such

that p = ς̂1 ;∗ ς̂2 and ς̃1 = |ς̂1|al and ς̃2 = |ς̂2|al and, if ς̃2 is an Exit-Ret

then ς̂1 ∈ CE ∗p(ς̂2) otherwise ς̂1 = CE p(ς̂2)

2. For each ς̃ in Final , there exists a final state ς̂ ∈ RS such that ς̃ = |ς̂|al

Initially, we show that the properties hold before the first iteration (at the be-

ginning of the algorithm): Final is empty and W contains just (Ĩ(pr), Ĩ(pr)),

for which property (1) holds.

A.1. PROOFS FOR CFA2 WITHOUT FIRST-CLASS CONTROL 137

Now the inductive step: at the beginning of each iteration, we remove an

edge (ς̃1, ς̃2) from W . We assume that the properties hold at that point. We

must show that, after we process the edge, the new elements of Seen and

Final satisfy the properties. We take cases on ς̂2.

ς̃2 is an entry, a C̃Apply or an inner C̃Eval:
(ς̃1, ς̃2) is in Seen, so by IH
∃ ς̂1, ς̂2 ∈ RS. p = ς̂1 ;

∗ ς̂2 ∧ ς̃1 = |ς̂1|al ∧ ς̃2 = |ς̂2|al ∧ ς̂1 = CE p(ς̂2)

For each ς̃3 in succ(ς̃2), (ς̃1, ς̃3) will be propagated.

If (ς̃1, ς̃3) is already in Seen, (1) holds by IH. (From now on, we will not re-

peat this argument; we will assume that the insertion in Seen happens now.)

Otherwise, we insert the edge at this iteration, at line 27. By lemma 27,

∃ ς̂3. ς̃3 = |ς̂3|al ∧ ς̂2 ; ς̂3. By item 2 of def. 11, ς̂1 = CE p(ς̂3).

ς̃2 is a call:
Let ς̃1 = (ulam1, d̂1, h1) and ς̃2 = (J(f e clam)l2K, tf 2, h2).
Also, assume S?(l2, f) (the other cases are simpler).

(ς̃1, ς̃2) is in Seen, so by IH
∃ ς̂1, ς̂2 ∈ RS. p = ς̂1 ;

+ ς̂2 ∧ ς̃1 = |ς̂1|al ∧ ς̃2 = |ς̂2|al ∧ ς̂1 = CE p(ς̂2)

Each entry ς̃3 in succ(ς̃2) will be propagated.

By lemma 27, ∃ ς̂3. ς̃3 = |ς̂3|al ∧ ς̂2 ; ς̂3. Since ς̂3 = CE p(ς̂3), (1) holds for ς̃3.

If there is no edge (ς̃3, ς̃4) in Summary , we are done. Otherwise, we must

show that (1) holds for the edge inserted in Seen by Update(ς̃1, ς̃2, ς̃3, ς̃4).

Let st1 be the stack of ς̂1. By lemma 20, the stack of ς̂2 is tf 2 :: st1.

Let ς̃3 = (ulam3, d̂3, h2) and ς̃4 = (J(k4 e4)l4K, tf 4, h4).
(Note that tf 4 contains only user bindings.) We know Summary ⊆ Seen so

by IH for (ς̃3, ς̃4) we get (note that ς̃4 is an Exit-Ret)

∃ ς̂ ′3, ς̂ ′4 ∈ RS. p′ = ς̂ ′3 ;
+ ς̂ ′4 ∧ ς̃3 = |ς̂ ′3|al ∧ ς̃4 = |ς̂ ′4|al ∧ ς̂ ′3 ∈ CE ∗p′(ς̂

′
4)

Then, ς̂ ′3 = (ulam3, d̂3, ĉ3, st
′
3, h2) and by lemma 20,

ς̂ ′4 = (J(k4 e4)l4K, tf 4[k4 7→ ĉ3] :: st ′3, h4).

But p′ is push monotonic, so by lemma 26 there exist states

ς̂3 = (ulam3, d̂3, clam, st3, h2) where st3 = tf 2[f 7→ {ulam3}] :: st1 and

ς̂4 = (J(k4 e4)l4K, st4, h4) where st4 = tf 4[k4 7→ clam] :: st3

such that ς̂3 ;+ ς̂4 and ς̂3 ∈ CE ∗p(ς̂4).

Now, we can extend p to ς̂1 ;+ ς̂2 ; ς̂3 ;
+ ς̂4.

By rule [ĈEA], the successor ς̂ of ς̂4 is (clam, Âu(e4, l4, st4, h4), st3, h4).

The state ς̃ produced by Update is (clam, Ãu(e4, l4, tf 4, h4), tf , h4) where

138 APPENDIX A. PROOFS

tf = tf 2[f 7→ {ulam3}]. It is simple to see that ς̃ = |ς̂|al.
Also, by item 3 of def. 11, ς̂1 = CE p(ς̂).

ς̃2 is an Exit-Ret:
ς̃2 has the form (J(k e)γK, tf , h).

If ς̃1 is Ĩ(pr) then we call Final(ς̃2) and we insert a local state ς̃ of the form

(halt , Ãu(e, γ, tf , h), ∅, h) in Final . We must show that (2) holds.

By IH for (Ĩ(pr), ς̃2), ∃ ς̂2. p = Î(pr) ;+ ς̂2 ∧ ς̃2 = |ς̂2|al ∧ Î(pr) ∈ CE ∗p(ς̂2).

By lemma 20, the stack st of ς̂2 is 〈tf [k 7→ halt]〉. Hence, the successor ς̂ of

ς̂2 is (halt , Âu(e, γ, st , h), 〈〉, h), and ς̃ = |ς̂|al holds.

If ς̃1 6= Ĩ(pr), for each triple (ς̃3, ς̃4, ς̃1) in Callers, we call Update(ς̃3, ς̃4, ς̃1, ς̃2).

We can work as in the previous case to show that the edge inserted in Seen

by Update satisfies (1).

For each triple (ς̃3, ς̃4, ς̃1) in TCallers, we propagate (ς̃3, ς̃2) (line 19). We must

show that (ς̃3, ς̃2) satisfies (1). Insertion in TCallers happens only at line 23,

which means that (ς̃3, ς̃4) is in Seen. Thus, by IH
∃ ς̂3, ς̂4 ∈ RS. p = ς̂3 ;

+ ς̂4 ∧ ς̃3 = |ς̂3|al ∧ ς̃4 = |ς̂4|al ∧ ς̂3 = CE p(ς̂4)

Also, ς̃4 ≈> ς̃1 so by lemma 27 ∃ ς̂1. ς̂4 ; ς̂1 ∧ ς̃1 = |ς̂1|al. By IH for (ς̃1, ς̃2)

∃ ς̂ ′1, ς̂ ′2 ∈ RS. p′ = ς̂ ′1 ;
+ ς̂ ′2 ∧ ς̃1 = |ς̂ ′1|al ∧ ς̃2 = |ς̂ ′2|al ∧ ς̂ ′1 = CE ∗p′(ς̂

′
2)

We can stitch these three together using lemma 26, so we can grow p to

ς̂3 ;
+ ς̂4 ; ς̂1 ;

+ ς̂2, where ς̂3 ∈ CE ∗p(ς̂2).

ς̃2 is a tail call:
Similarly.

A.2. PROOFS FOR CFA2 WITH FIRST-CLASS CONTROL 139

A.2 Proofs for CFA2 with first-class control

These proofs use the semantics without stack filtering for simplicity. Stack

filtering is orthogonal to first-class control; one can easily adapt the reason-

ing about stack filtering from the proofs in the previous section to the proofs

in this section.

Theorem (Simulation).

If ς → ς ′ and |ς|ca v ς̂, then there exists ς̂ ′ such that ς̂ ; ς̂ ′ and |ς ′|ca v ς̂ ′.

Proof. By cases on the concrete transition. We only show the theorem for

the transitions that involve first-class control, i.e., rules [ÛAE] and [ĈEA].

Rule [UAE]:
(〈J(λl(u k) call)K, ρ〉, d, c, ve, t)→ (call , ρ′, ve ′, t)

ρ′ = ρ[u 7→ t, k 7→ t]

ve ′ = ve[(u, t) 7→ d, (k, t) 7→ c]

Let ts =

〈〉 c = halt

toStack(LV (L(lam)), ρ1, ve) c = (lam, ρ1)

Since |ς|ca v ς̂, ς̂ is of the form (J(λl(u k) call)K, d̂, ĉ, st , h),

where |d|ca v d̂, |c|ca = ĉ, ts v st and |ve|ca v h.

The abstract transition is

(J(λl(u k) call)K, d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂, k 7→ ĉ], st)

h ′(x) =


h(u) ∪ d̂ (x = u) ∧ H?(u)

h(k) ∪ {(ĉ, st)} (x = k) ∧ H?(k)

h(x) o/w

Let ts ′ be the stack of |ς ′|ca.
From iuλ(call) = λl we get ts ′ = toStack(LV (l), ρ′, ve ′).

We must show that |ς ′|ca v ς̂ ′, i.e., ts ′ v st ′ and |ve ′|ca v h ′.

Showing ts ′ v st ′ is not impacted by first-class control, so the previous proof

does not change.

If H?(k), then we must show |ve ′|ca(k) v h ′(k). We assume that c = (lam, ρ1).

(Showing it for c = halt is similar.)

We know that |ve ′|ca(k) = |ve|ca(k) ∪ {〈lam, toStack(LV (L(lam)), ρ1, ve
′)〉}

140 APPENDIX A. PROOFS

and h ′(k) = h(k) ∪ {〈lam, st〉}. Since |ve|ca v h, it is enough to show

toStack(LV (L(lam)), ρ1, ve
′) v st . But we already know that ts v st , so

we can just show ts = toStack(LV (L(lam)), ρ1, ve
′). This holds by lemma 6,

because the two bindings of ve ′ born at time t are younger than all bindings

in ρ1.

Rule [CEA]:
(J(q e)γK, ρ, ve, t)→ (proc, d, ve, γ :: t)

proc = A(q, ρ, ve)

d = A(e, ρ, ve)

Let ts = toStack(LV (γ), ρ, ve). Since |ς|ca v ς̂, ς̂ is of the form

(J(q e)γK, st , h), where |ve|ca v h and ts v st . The abstract transition is

(J(q e)γK, st , h) ; (ĉ, d̂, st ′, h)

d̂ = Âu(e, γ, st , h)

(ĉ, st ′) ∈


{(q, st)} Lam?(q)

{(st(q), pop(st))} S?(γ, q)

h(q) H?(γ, q)

Let ts ′ be the stack of |ς ′|ca. We must show that |ς ′|ca v ς̂ ′, i.e., |proc|ca = ĉ,

|d|ca v d̂, and ts ′ v st ′.

Showing |d|ca v d̂ is simple, by cases on e.

We show the other two for the first-class-control case, i.e., when H?(γ, q).

We assume that proc = ve(q, ρ(q)) = (lam, ρ1).

(The proof is similar when ve(q, ρ(q)) = halt).

In this case, |proc|ca = lam and (lam, toStack(LV (L(lam)), ρ1, ve)) ∈ |ve|ca(q).
Since |ve|ca v h, there exists a pair (lam, st ′) ∈ h(q) such that

toStack(LV (L(lam)), ρ1, ve) v st ′. We pick this pair for ς̂ ′.

But then, ts ′ v st ′ because ts ′ = toStack(LV (L(lam)), ρ1, ve).

For the proof of the soundness theorem, we need the following lemma. It

is a combination of the same-level reachability and path-decomposition lem-

mas (lemmas 20 and 21), but slightly weaker because it does not make any

claims about push monotonicity. (Push monotonicity is trickier to define in

the presence of first-class control, but we do not need it to prove soundness.)

A.2. PROOFS FOR CFA2 WITH FIRST-CLASS CONTROL 141

Lemma 28 (Path decomposition). Let p = Î(pr) ;∗ ς̂ where ς̂ = (. . . , st , h).

1. If ς̂ is a final state then CE p(ς̂) = ∅.
2. If ς̂ is an entry then CE p(ς̂) 6= ∅. (Thus, CE ∗p(ς̂) 6= ∅.)

Let ς̂e ∈ CE ∗p(ς̂), of the form (ulam, d̂, ĉ, ste, he).

Then, st = ste and the continuation argument of ς̂ is ĉ.

3. If ς̂ is an Exit-Esc then st 6= 〈〉 and CE p(ς̂) 6= ∅.
(We do not assert anything about the stack change between a state in

CE ∗p(ς̂) and ς̂, it can be arbitrary.)

4. If ς̂ is none of the above then CE p(ς̂) 6= ∅.
Let ς̂e = (J(λl(u k) call)K, d̂, ĉ, ste, he).
If ς̂e ∈ (CE ∗p(ς̂) \ CE p(ς̂)) then

• there is a frame tf such that st = tf :: ste.

• there is a variable k′ such that tf (k′) = ĉ.

If ς̂e ∈ CE p(ς̂) then

• there is a frame tf such that st = tf :: ste, dom(tf) ⊆ LV (l),

tf (u) = d̂, tf (k) = ĉ.

• if ς̂ is an Êval over a call site labeled ψ then ψ ∈ LL(l).

• if ς̂ is a ĈApply over a lambda labeled γ then γ ∈ LL(l).

Proof. By induction on the length of p.

If the length of p is 0, then ς̂ = Î(pr) and CE p(ς̂) = CE ∗p(ς̂) = {ς̂}. The

lemma trivially holds.

If the length is greater than 0, p has the form Î(pr) ;∗ ς̂ ′ ; ς̂. We take

cases on ς̂. We only show the cases that involve first-class control.

ς̂ is an Exit-Esc:
Let (k e)γ be the call site in ς̂. The set h(k) contains pairs of the form (ĉ′, st ′).

Each such pair can only be put in h when transitioning from a ÛApply over

def λ(k) to an Êval . Each such ÛApply is in CE p(ς̂).

We must show that st 6= 〈〉. The predecessor ς̂ ′ of ς̂ is an Âpply . If ς̂ ′ is

a ÛApply then by rule [ÛAE] the stack of ς̂ has at least one frame. If ς̂ ′ a

ĈApply then by IH we get that CE p(ς̂
′) 6= ∅ and that the stack of ς̂ ′ has one

more frame than the stack of any state in CE p(ς̂
′). Thus, by rule [ĈAE], st is

also non-empty.

142 APPENDIX A. PROOFS

ς̂ is a ĈApply and ς̂ ′ is an Exit-Esc:
Let ς̂ = (ĉ, d̂, st , h) and ς̂ ′ = (J(k e)γK, st ′, h).

(By IH, st ′ 6= 〈〉. This is necessary for the transition to occur, because e may

be a stack reference.)

By IH, CE ∗p(ς̂
′) 6= ∅. All entries in CE ∗p(ς̂

′) are over def λ(k). Since ς̂ is over

ĉ and has stack st , there is one or more entries in CE ∗p(ς̂
′) whose stack is st

and their continuation argument is ĉ.

Let S be the set of those entries. We first show that one of the two

following statements holds.

• For each ς̂1 in S, Î(pr) ∈ CE ∗p(ς̂1).

• For each ς̂1 in S, Î(pr) /∈ CE ∗p(ς̂1).

For the sake of contradiction, let ς̂1, ς̂2 ∈ S, such that Î(pr) ∈ CE ∗p(ς̂1) and

Î(pr) /∈ CE ∗p(ς̂2). Then, let ς̂3 6= Î(pr) be the earliest state in CE ∗p(ς̂2). Since

it’s the earliest, its predecessor ς̂4 is a call. The path has the form

Î(pr) ;+ ς̂4 ; ς̂3 ;
∗ ς̂2 ;

+ ς̂ ′ ; ς̂.

By IH for Î(pr) ;+ ς̂2, the stack of ς̂3 is st and its continuation argument is

ĉ. Then, since ς̂4 is a call, ĉ is the continuation lambda appearing at ς̂4. Also,

by IH for Î(pr) ;+ ς̂1, the continuation argument of ς̂1 is halt . But then, ĉ is

simultaneously a lambda and halt , contradiction.

Now we prove the lemma considering only the two cases for S.

• For each ς̂1 in S, Î(pr) ∈ CE ∗p(ς̂1).

In this case, ĉ = halt and st = 〈〉. Thus, ς̂ is a final state. We must show

that CE ∗p(ς̂) = ∅. By def. 16, if CE ∗p(ς̂) is not empty, then the path can be

decomposed according to the fourth case:

Î(pr) ;+ ς̂3 ; ς̂2 ;
∗ ς̂1 ;

+ ς̂ ′ ; ς̂

where ς̂2 ∈ CE ∗p(ς̂1), ς̂3 is a call, CE p(ς̂3) ⊆ CE p(ς̂).

But by IH, the continuation of ς̂2 is halt , which is impossible because its

predecessor is a call. Thus, CE ∗p(ς̂) = ∅.
• For each ς̂1 in S, Î(pr) /∈ CE ∗p(ς̂1).

Let ς̂2 6= Î(pr) be the earliest state in CE ∗p(ς̂1). Then, its predecessor ς̂3 is

a call. Thus, p has the form Î(pr) ;+ ς̂3 ; ς̂2 ;
∗ ς̂1 ;

+ ς̂ ′ ; ς̂.

By IH for Î(pr) ;+ ς̂1, we get that the continuation argument of ς̂2 is ĉ

and its stack is st . Then, by rule [ÛEA], we get that ĉ is the continuation

lambda appearing at the call site of ς̂3. Thus, ς̂ is not a final state, so we

A.2. PROOFS FOR CFA2 WITH FIRST-CLASS CONTROL 143

must show that CE p(ς̂) 6= ∅.
By item 4 of def. 16, CE p(ς̂3) ⊆ CE p(ς̂). But by IH, we get that CE p(ς̂3) 6=
∅. Thus, CE p(ς̂) 6= ∅.
We now proceed to prove the remaining obligations for the states in

CE p(ς̂) ∩ CE p(ς̂3). (Without loss of generality, the following arguments

apply to all states in CE p(ς̂), because any decomposition of p to find cor-

responding entries for ς̂ has the form we used above.)

Let ς̂e ∈ CE p(ς̂3), of the form (J(λl(u k′) call)K, d̂e, ĉe, ste, he).
ς̂3 has the form (J(e1 e2 q)l

′
K, st3, h3) where q = ĉ.

By IH, st3 = tf :: ste, dom(tf) ⊆ LV (l), tf (u) = d̂e, tf (k′) = ĉe, l
′ ∈ LL(l).

ς̂2 has the form (ulam, d̂2, ĉ, st , h) where st = st3. Thus, st has the appro-

priate form. Also, ĉ is a lambda appearing at l′, so L(ĉ) ∈ LL(l).

When ς̂e ∈ CE ∗p(ς̂3) \ CE p(ς̂3), the proof is similar and simpler.

Lemma 29 (Local simulation).

Let ς̂ ∈ RS and ς̂ ; ς̂ ′. If ς̂ is not an Exit-Ret or Exit-Esc, |ς̂ ′|al ∈ succ(|ς̂|al).

Theorem (Soundness). Let p = Î(pr) ;∗ ς̂. Then, after summarization:

• If ς̂ is not final and ς̂ ′ ∈ CE p(ς̂) then (|ς̂ ′|al, |ς̂|al) ∈ Seen

• If ς̂ is a final state then |ς̂|al ∈ Final

• If ς̂ is an Exit-Ret or Exit-Esc and ς̂ ′ ∈ CE ∗p(ς̂) then (|ς̂ ′|al, |ς̂|al) ∈ Seen

• If ς̂ is an Exit-Esc and ς̂ ′ ∈ CE ∗p(ς̂) then (|ς̂ ′|al, |ς̂|al) is already in Summary

when it is removed from W to be examined

Proof. By induction on the length of p.

Note that we slightly strengthen theorem 18 by adding one more proof obli-

gation, in order to reason about summaries for escaping continuations.

The base case is simple.

If the length is greater than 0, p has the form Î(pr) ;∗ ς̂ ′ ; ς̂.

We take cases on ς̂. We only show the cases that involve first-class control.

ς̂ is a ĈApply and ς̂ ′ is an Exit-Esc:
Let ς̂ = (ĉ, d̂, st , h) and ς̂ ′ = (J(k e)γK, st ′, h). By lemma 28, CE ∗p(ς̂

′) 6= ∅.
Since (ĉ, st) ∈ h(k), there exists ς̂1 in CE p(ς̂

′) of the form (def λ(k), d̂1, ĉ, st , h1).

Thus, p can be written Î(pr) ;∗ ς̂1 ;
+ ς̂ ′ ; ς̂. We take two cases.

144 APPENDIX A. PROOFS

• Î(pr) ∈ CE ∗p(ς̂1)

In this case, Î(pr) ∈ CE ∗p(ς̂
′). By lemma 28 for Î(pr) ;∗ ς̂1, we get

ĉ = halt and st = 〈〉. Thus, ς̂ is a final state. By IH, (|Î(pr)|al, |ς̂ ′|al)
was put in Summary before it was examined. Therefore, when it was

examined, the test at line 26 was false.

The test at line 30 was true, so Final(|ς̂ ′|al) was called. By lemma 28

for Î(pr) ;+ ς̂ ′, we get that st ′ is not empty, so it has the form tf :: st ′′.

Then, |ς̂ ′|al is (J(k e)γK, tf � UVar , h � UVar).

We put the state (halt , Ãu(e, γ, tf � UVar , h � UVar), ∅, h � UVar) in

Final .

But this state is |ς̂|al because Ãu(e, γ, tf � UVar , h � UVar) is equal to

Âu(e, γ, st ′, h).

• Î(pr) /∈ CE ∗p(ς̂1)

Let ς̂2 6= Î(pr) be the earliest state in CE ∗p(ς̂1). (Thus, ς̂2 ∈ CE ∗p(ς̂
′).) The

predecessor ς̂3 of ς̂2 is a call. Thus,

p = Î(pr) ;+ ς̂3 ; ς̂2 ;
∗ ς̂1 ;

+ ς̂ ′ ; ς̂

By lemma 28, we find that the continuation argument of ς̂2 is ĉ and its

stack is st . By rule [ÛEA], ĉ is the continuation lambda passed at ς̂3.

Therefore, ς̂ is not a final state. By def. 16 we know that CE p(ς̂3) ⊆
CE p(ς̂). For each ς̂4 ∈ CE p(ς̂3), we must show that (|ς̂4|al, |ς̂|al) was put in

Seen. By IH, we know that (|ς̂4|al, |ς̂3|al) and (|ς̂2|al, |ς̂ ′|al) were put in W

and examined. We take cases on which edge was examined first.

Assume (|ς̂4|al, |ς̂3|al) was examined first. By lemma 29, |ς̂2|al ∈ succ(|ς̂3|al),
so at line 17 we put (|ς̂4|al, |ς̂3|al, |ς̂2|al) in Callers. We later examine

(|ς̂2|al, |ς̂ ′|al). By IH, it is in Summary when it’s examined, so the test

at line 26 is false. Also, ς̂2 6= Î(pr) so the test at line 30 is false as well.

Since (|ς̂4|al, |ς̂3|al, |ς̂2|al) is in Callers, we call Update(|ς̂4|al, |ς̂3|al, |ς̂ ′|al)
at line 32. We must show that the state ς̃ created by Update is |ς̂|al.
By lemma 28, we get that st ′ 6= 〈〉. It is easy to see that the user value

passed at ς̃, which is Ãu(e, γ, |st ′|al, |h|al), is equal to Âu(e, γ, st ′, h).

By lemma 28, the stack of ς̂3 is not empty.

Thus, ς̂3 has the form (J(e1 e2 q)lK, tf :: st3, h3) where q = ĉ.

By rule [ÛEA], the stack st of ς̂2 is tf :: st3.

Therefore, the frame of ς̃ is equal to |st |al, so ς̃ = |ς̂|al.
Assume that (|ς̂2|al, |ς̂ ′|al) was examined first. Then, when (|ς̂4|al, |ς̂3|al) is

examined, we call Update at line 18. The proof is similar.

A.2. PROOFS FOR CFA2 WITH FIRST-CLASS CONTROL 145

ς̂ is an Exit-Esc.
Then, ς̂ ′ is an Âpply . By lemma 28, CE p(ς̂

′) 6= ∅. Let ς̂1 ∈ CE p(ς̂
′). By IH,

(|ς̂1|al, |ς̂ ′|al) was examined. Also, by lemma 29, |ς̂|al ∈ succ(|ς̂ ′|al). Thus, in

line 7 or 13, (|ς̂1|al, |ς̂|al) was propagated but not put in Summary .

By lemma 28, CE p(ς̂) 6= ∅. Let ς̂2 ∈ CE p(ς̂). By IH, (|ς̂2|al, |ς̂2|al) was

examined. We proceed by cases on whether (|ς̂1|al, |ς̂|al) or (|ς̂2|al, |ς̂2|al) was

examined first.

• (|ς̂2|al, |ς̂2|al) was first

When (|ς̂1|al, |ς̂|al) is examined, the test at line 26 is true. Also, |ς̂2|al is in

EntriesEsc, it was put at line 10 when (|ς̂2|al, |ς̂2|al) was examined. Thus,

at line 29, (|ς̂2|al, |ς̂|al) is put in Summary and Seen.

• (|ς̂1|al, |ς̂|al) was first

At line 27, |ς̂|al was put in Escapes. When (|ς̂2|al, |ς̂2|al) is examined, at

line 11 (|ς̂2|al, |ς̂|al) is put in Summary and Seen.

If ς̂2 has a predecessor ς̂3 which is a tail call, then each ς̂4 in CE ∗p(ς̂3) is

also in CE ∗p(ς̂). We must show that (|ς̂4|al, |ς̂|al) satisfies the theorem. Wlog,

we assume that ς̂4 /∈ CE p(ς̂). (We have not constrained ς̂2, so if ς̂4 ∈ CE p(ς̂),

we have already covered this case.) The subpath ς̂4 ;+ ς̂3 has the form

ς̂4 ;
+ c1 ; e1 ;

+ c2 ; e2 ;
+ . . . ;+ cn ; en ;+ ς̂3, where n > 0, cis are

tail calls, eis are entries and ei ∈ CE p(ci+1).

When n = 0, ς̂4 ∈ CE p(ς̂3). When n > 0, en ∈ CE p(ς̂3) and ς̂4 ∈ CE p(c1).

We assume that n > 0. (For n = 0, the proof is simpler.)

First, we show the theorem for (|en|al, |ς̂|al); we take cases depending on

whether (|en|al, |ς̂3|al) or (|ς̂2|al, |ς̂|al) was processed first.

• (|en|al, |ς̂3|al) was first

By lemma 29, |ς̂2|al∈succ(|ς̂3|al). Thus, in line 37, we put (|en|al, |ς̂3|al, |ς̂2|al)
in TCallers. When (|ς̂2|al, |ς̂|al) is examined, we follow the else branch

at line 31. As a result, at line 33 (|en|al, |ς̂|al) is put in Summary and Seen.

• (|ς̂2|al, |ς̂|al) was first

Then, when (|en|al, |ς̂3|al) is examined, (|ς̂2|al, |ς̂|al) is in Summary . By

lemma 29, |ς̂2|al ∈ succ(|ς̂3|al). Thus, in line 41, (|en|al, |ς̂|al) is put in Seen.

It’s not put in Summary because we do not want to modify Summary

while we’re iterating over it. But lines 40 and 42 ensure that (|en|al, |ς̂|al)
will be in Summary when it is examined.

146 APPENDIX A. PROOFS

By repeating this process n times, we can show that, eventually, for any i the

edge (|ei|al, |ς̂|al) satisfies the theorem, and the edge (|ς̂4|al, |ς̂|al) also satisfies

the theorem.

APPENDIX B

Complexity of the CFA2 workset algorithm

In this appendix, we compute an upper bound of the running time of the

algorithm of fig. 4.8.

Let n be the size of the program to be analyzed. We write |S| for the size

of a set S.

|ÛProc| = 2n ⇒ |Heap| = |F̃rame| = 2n
2

|Ẽval | = n · 2n2 · 2n2
= n22n2

|ŨApply | = n · 2n · 2n2
= n2n

2+n

|C̃Apply | = n · 2n · 2n2 · 2n2
= n22n2+n

|Seen| = |ŨApply | ·(|Ẽval |+ |ŨApply |+ |C̃Apply |) = |ŨApply | ·O(|C̃Apply |) =

O(n223n2+2n)

|Summary | = |ŨApply | · |Ẽval | = O(n223n2+n)

From rule [ŨEA], we see that a ŨEval state can have at most n successors,

one for each user lambda in the program. Therefore,

|Callers| = |ŨApply | · |Ẽval | · n = n323n2+2n

|TCallers| = |Callers|
All final states have halt in operator position and an empty stack. Thus,

|Final | = 2n · 2n2
= 2n

2+n

We can compare two elements of ÛProc for equality in time O(n), which

implies that we can compare two heaps or two frames for equality in time

O(n2). Therefore, we can compare two local states for equality pointwise

in time O(n2). Last, we also need time O(n2) to compare pairs or triples of

states, e.g., elements of Seen or Callers. So, to test membership in Seen in

the function Propagate takes time O(n2 · |Seen|) = O(n423n2+2n). The cost of

a call to Update is also O(n423n2+2n).

There are four cases for ς̃2 in the algorithm. We now compute the cost of

each case.

147

148 APPENDIX B. COMPLEXITY OF THE CFA2 WORKSET ALGORITHM

• ς̃2 is an entry, C̃Apply or inner C̃Eval

The number elements in Seen that fall into this case is

|ŨApply | · (|ŨApply | + |C̃Apply | + |C̃Eval |) = |ŨApply | · O(|C̃Apply |) =

O(n223n2+2n).

To find the cost of processing one element, note that each ς̃2 has one

successor, so we may search Seen once, in time O(n423n2+2n). Thus, the

total cost for this case is O(n223n2+2n) ·O(n423n2+2n) = O(n626n2+4n).

• ς̃2 is a call

The pairs (ς̃1, ς̃2) that fall into this case are |ŨApply |·|Ẽval | = O(n223n2+n).

By rule [ŨEA], each ς̃2 can have n successors ς̃3.

Line 10 involves searching Seen, so it costs O(n423n2+2n).

Line 11 involves searching Callers, so it costs O(n523n2+2n).

The body of the loop in line 12 costs O(n423n2+2n) and since ς̃3 is fixed

and ς̃4 is in Ẽval , the loop costs |Ẽval | ·O(n423n2+2n) = O(n525n2+2n).

Thus, line 12 dominates the cost of lines 10 – 12 and the loop in line 9

costs n ·O(n525n2+2n) = O(n625n2+2n).

The total cost for this case is O(n223n2+n) ·O(n625n2+2n) = O(n828n2+3n).

• ς̃2 is an Exit-Ret

The possible (ς̃1, ς̃2) pairs are |ŨApply | · |Ẽval | = O(n223n2+n).

The cost of lines 14 – 19 is dominated by the loops in lines 18 and 19.

The heap does not change in the [ŨEA] transition, so each ς̃1 can have

|Ẽval |/2n2
= n2n

2 predecessors ς̃4.

Thus, the loop in line 18 is executed |Ẽval | · O(n2n
2
) = O(n223n2

) times,

so it costs O(n223n2
) ·O(n423n2+2n) = O(n626n2+2n).

Line 19 costs the same as line 18.

The total cost for this case is O(n223n2+n) ·O(n626n2+2n) = O(n829n2+3n).

• ς̃2 is an Exit-TC

This case costs the same as when ς̃2 is a call.

The overall cost of the algorithm is the sum of the costs of the four cases,

which is dominated by the Exit-Ret case, so the algorithm costsO(n829n2+3n).1

1 In a previous article (LMCS 2011), we mistakenly wrote that the body of the loop
in line 19 costs |Seen| because we did not account for the time it takes to compare two
elements of Seen. Nevertheless, O(n829n

2+3n) is a tighter upper bound than the one in the
LMCS article for two reasons. First, we multiply the cost of each case for ς̃2 only with the
relevant pairs of states, not with all edges in Seen. Second, we use rule [ŨEA] to find a
tighter bound for the number of iterations of the loop in line 18.

Bibliography

[1] Ole Agesen. The Cartesian Product Algorithm: simple and precise

type inference of parametric polymorphism. In European Conference
on Object-Oriented Programming (ECOOP), pages 2–26, 1995.

[2] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid,

Thomas W. Reps, and Mihalis Yannakakis. Analysis of recursive

state machines. Transactions on Programming Languages and Systems
(TOPLAS), 27(4):786–818, 2005.

[3] Lars Andersen. Program analysis and specialization for the C program-
ming language. PhD thesis, DIKU, 1994.

[4] Andrew W. Appel. Compiling with continuations. Cambridge University

Press, 1992.

[5] Gogul Balakrishnan and Thomas Reps. Recency-abstraction for heap-

allocated storage. In Static Analysis Symposium (SAS), pages 221–239,

2006.

[6] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analy-

sis of pushdown automata: application to model-checking. In Interna-
tional Conference on Concurrency Theory (CONCUR), pages 135–150,

1997.

[7] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative spec-

ification of sophisticated points-to analyses. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages

243–262, 2009.

[8] Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug:

a powerful approach to weakest preconditions. In Programming Lan-
guage Design and Implementation (PLDI), pages 363–374, 2009.

149

150 BIBLIOGRAPHY

[9] Jong-Deok Choi, Michael G. Burke, and Paul R. Carini. Efficient flow-

sensitive interprocedural computation of pointer-induced aliases and

side effects. In Principles of Programming Languages (POPL), pages

232–245, 1993.

[10] William D. Clinger and Lars Thomas Hansen. Lambda, the ultimate la-

bel or a simple optimizing compiler for Scheme. In LISP and Functional
Programming, pages 128–139, 1994.

[11] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction or approx-

imation of fixpoints. In Principles of Programming Languages (POPL),

pages 238–252, 1977.

[12] Patrick Cousot and Radhia Cousot. Systematic design of program

analysis frameworks. In Principles of Programming Languages (POPL),

pages 269–282, 1979.

[13] Ole-Johan Dahl and Kristen Nygaard. SIMULA - an ALGOL-based sim-

ulation language. Communications of the ACM (CACM), 9(9):671–678,

1966.

[14] Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and
Functional Programming, pages 151–160, 1990.

[15] Olivier Danvy and Julia L. Lawall. Back to direct style II: first-class

continuations. In LISP and Functional Programming, pages 299–310,

1992.

[16] Saumya K. Debray and Todd A. Proebsting. Interprocedural con-

trol flow analysis of first-order programs with tail-call optimization.

ACM Transactions on Programming Languages and Systems (TOPLAS),

19(4):568–585, 1997.

[17] Christopher Earl, Matthew Might, and David Van Horn. Pushdown

control-flow analysis of higher-order programs. In Workshop on Scheme
and Functional Programming, 2010.

[18] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander

Aiken. Partial online cycle elimination in inclusion constraint graphs.

BIBLIOGRAPHY 151

In Programming Language Design and Implementation (PLDI), pages

85–96, 1998.

[19] Manuel Fähndrich and Jakob Rehof. Type-based flow analysis and

context-free language reachability. Mathematical Structures in Com-
puter Science, 18(5):823–894, 2008.

[20] Matthias Felleisen. The theory and practice of first-class prompts. In

Principles of Programming Languages (POPL), pages 180–190, 1988.

[21] Alain Finkel, Bernard Willems, and Pierre Wolper. A direct symbolic

approach to model checking pushdown systems. In Verification of Infi-
nite State Systems (Infinity), pages 27–37, 1997.

[22] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.

The essence of compiling with continuations. In Programming Lan-
guage Design and Implementation (PLDI), pages 237–247, 1993.

[23] Daniel Friedman and Mitchell Wand. Essentials of Programming Lan-
guages, 3rd edition. MIT Press, 2008.

[24] Salvatore Guarnieri and Benjamin Livshits. GATEKEEPER: mostly

static enforcement of security and reliability policies for JavaScript

code. In USENIX Security Symposium, pages 151–197, 2009.

[25] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static anal-

ysis for Ajax intrusion detection. In International Conference on World
Wide Web (WWW), pages 561–570, 2009.

[26] Jörgen Gustavsson and Josef Svenningsson. Constraint abstractions.

In Programs as Data Objects, pages 63–83, 2001.

[27] Rebecca Hasti and Susan Horwitz. Using static single assignment form

to improve flow-insensitive pointer analysis. In Programming Language
Design and Implementation (PLDI), pages 97–105, 1998.

[28] Phillip Heidegger and Peter Thiemann. Recency types for dynamically-

typed, object-based languages. In Workshop on Foundations of Object-
Oriented Languages (FOOL), 2009.

152 BIBLIOGRAPHY

[29] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using

cla: A million lines of c code in a second. In Programming Language
Design and Implementation (PLDI), pages 254–263, 2001.

[30] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling

the HTML DOM and browser API in static analysis of Javascript web

applications. In Foundations of Software Engineering (FSE), pages 59–

69, 2011.

[31] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis

for JavaScript. In Static Analysis Symposium (SAS), pages 238–255,

2009.

[32] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interpro-

cedural analysis with lazy propagation. In Static Analysis Symposium
(SAS), pages 320–339, 2010.

[33] Matt Kaufmann, Panagiotis Manolios, and J Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, 2000.

[34] Andrew Kennedy. Compiling with continuations, continued. In Interna-
tional Conference on Functional Programming (ICFP), pages 177–190,

2007.

[35] Jens Knoop and Bernhard Steffen. The interprocedural coincidence

theorem. In Compiler Construction (CC), pages 125–140, 1992.

[36] Naoki Kobayashi. Types and higher-order recursion schemes for ver-

ification of higher-order programs. In Principles of Programming Lan-
guages (POPL), pages 416–428, 2009.

[37] Naoki Kobayashi. Higher-order model checking: From theory to prac-

tice. In Logic in Computer Science (LICS), pages 219–224, 2011.

[38] David Kranz. ORBIT: An optimizing compiler for Scheme. PhD thesis,

Yale University, 1988.

[39] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James

Philbin, and Norman Adams. ORBIT: an optimizing compiler for

Scheme. In Compiler Construction, pages 219–233, 1986.

BIBLIOGRAPHY 153

[40] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-

sensitive points-to analysis using a BDD-based implementation. ACM
Transactions on Software Engineering and Methodology, 18(1):1–53,

2008.

[41] Mario Méndez-Lojo, Jorge A. Navas, and Manuel V. Hermenegildo. A

flexible, (C)LP-based approach to the analysis of object-oriented pro-

grams. In Logic-Based Program Synthesis and Transformation (LOPSTR),

pages 154–168, 2007.

[42] Matthew Might. Environment analysis of higher-order languages. PhD

thesis, Georgia Institute of Technology, 2007.

[43] Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving

and exploiting the k-CFA paradox: illuminating functional vs. object-

oriented program analysis. In Programming Language Design and Im-
plementation (PLDI), pages 305–315, 2010.

[44] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized

object sensitivity for points-to and side-effect analyses for Java. In In-
ternational Symposium on Software Testing and Analyses (ISSTA), pages

1–11, 2002.

[45] Christian Mossin. Flow Analysis of Typed Higher-Order Programs. PhD

thesis, DIKU, Department of Computer Science, University of Copen-

hagen, 1996.

[46] Kalyan Muthukumar and Manuel Hermenegildo. Determination of

variable dependence information through abstract interpretation. In

North American Conference on Logic Programming (NACLP), pages 166–

185, 1989.

[47] Jorge A. Navas, Mario Méndez-Lojo, and Manuel V. Hermenegildo. A

generic, context sensitive analysis framework for object oriented pro-

grams. In Workshop on Formal Techniques for Java-like Programs (FT-
fJP), 2007.

[48] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999.

154 BIBLIOGRAPHY

[49] Hanne Riis Nielson and Flemming Nielson. Infinitary control flow anal-

ysis: a collecting semantics for closure analysis. In Principles of Pro-
gramming Languages (POPL), pages 332–345, 1997.

[50] Jakob Rehof and Manuel Fähndrich. Type-based flow analysis: from

polymorphic subtyping to CFL-reachability. In Principles of Program-
ming Languages (POPL), pages 54–66, 2001.

[51] John Reppy. Type-sensitive control-flow analysis. In Workshop on ML,

pages 74–83, 2006.

[52] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise inter-

procedural dataflow analysis via graph reachability. In Principles of
Programming Languages (POPL), pages 49–61, 1995.

[53] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An anal-

ysis of the dynamic behavior of JavaScript programs. In Programming
Language Design and Implementation (PLDI), pages 1–12, 2010.

[54] Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-

class polymorphic delimited continuations by a type-directed selective

cps-transform. In International Conference on Functional Programming
(ICFP), pages 317–328, 2009.

[55] Atanas Rountev, Ana Milanova, and Barbara Ryder. Points-to analysis

for java using annotated constraints. In Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages 43–55, 2001.

[56] Amr Sabry and Matthias Felleisen. Reasoning about programs in

continuation-passing style. In LISP and Functional Programming, pages

288–298, 1992.

[57] Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Tech-

nische Universität München, 2002.

[58] Manuel Serrano. Control flow analysis: a functional languages com-

pilation paradigm. In Symposium on Applied Computing (SAC), pages

118–122, 1995.

[59] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data

flow analysis. In Steven Muchnick and Neil Jones, editors, Program
Flow Analysis: Theory and Applications. Prentice Hall, 1981.

BIBLIOGRAPHY 155

[60] Olin Shivers. Control flow analysis in Scheme. In Programming Lan-
guage Design and Implementation (PLDI), pages 164–174, 1988.

[61] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD

thesis, Carnegie-Mellon University, 1991.

[62] Olin Shivers. The semantics of Scheme control-flow analysis. In Partial
Evaluation and Program Manipulation (PEPM), pages 190–198, 1991.

[63] Olin Shivers. Continuations and threads: Expressing machine concur-

rency directly in advanced languages. In Workshop on Continuations,
pages 1–15, 1997.

[64] Olin Shivers. Higher-order control-flow analysis in retrospect: lessons

learned, lessons abandoned. In SIGPLAN Notices, special issue: 20 years
of PLDI (1979 - 1999): a selection. ACM, 2004.

[65] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your

contexts well: understanding object-sensitivity. In Principles of Pro-
gramming Languages (POPL), pages 17–30, 2011.

[66] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-

sensitive points-to analysis for Java. In Programming Language Design
and Implementation (PLDI), pages 387–400, 2006.

[67] Guy L. Steele. Rabbit: A compiler for Scheme. Master’s thesis, Mas-

sachusetts Institute of Technology, 1978.

[68] Bjarne Steensgaard. Points-to analysis in almost linear time. In Princi-
ples of Programming Languages (POPL), pages 32–41, 1996.

[69] Peter Thiemann. Towards a type system for analyzing JavaScript pro-

grams. In European Symposium on Programming (ESOP), pages 408–

422, 2005.

[70] David Van Horn and Harry Mairson. Deciding k-CFA is complete for EX-

PTIME. In International Conference on Functional Programming (ICFP),

pages 275–282, 2008.

[71] Mitchell Wand. Continuation-based multiprocessing. In LISP and Func-
tional Programming, pages 19–28, 1980.

156 BIBLIOGRAPHY

[72] Mitchell Wand and Paul Steckler. Selective and lightweight closure

conversion. In Principles of Programming Languages (POPL), pages

435–445, 1994.

[73] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Us-

ing Datalog with binary decision diagrams for program analysis. In

Asian Symposium on Programming Languages and Systems (APLAS),

pages 97–118, 2005.

[74] John Whaley and Monica S. Lam. Cloning-based context-sensitive

pointer alias analysis using binary decision diagrams. In Programming
Language Design and Implementation (PLDI), pages 131–144, 2004.

[75] Andrew Wright and Suresh Jagannathan. Polymorphic Splitting: an

effective polyvariant flow analysis. Transactions on programming lan-
guages and systems (TOPLAS), 20(1):166–207, 1998.

[76] Jianwen Zhu. Symbolic pointer analysis. In International Conference
on Computer-aided Design (ICCAD), pages 150–157, 2002.

	Abstract
	Acknowledgments
	Notes to the reader
	Contents
	Introduction
	Preliminaries
	Abstract interpretation
	The elements of continuation-passing style
	Partitioned CPS
	Syntax and notation
	Concrete semantics
	Preliminary lemmas

	The kCFA analysis
	Introduction to kCFA
	The semantics of kCFA
	Workset algorithm
	Correctness

	Limitations of finite-state analyses
	Imprecise dataflow information
	Inability to calculate stack change
	Sensitivity to syntax changes
	The environment problem and fake rebinding
	Polyvariant versions of kCFA are intractable
	The root cause: call/return mismatch

	The CFA2 analysis
	Setting up the analysis
	The Orbit stack policy
	Stack/heap split
	Ruling out first-class control syntactically

	The semantics of CFA2
	Correctness
	The abstract semantics as a pushdown system

	Exploring the infinite state space
	Overview of summarization
	Local semantics
	Workset algorithm
	Correctness

	Without heap variables, CFA2 is exact
	Stack filtering
	Complexity
	Towards a Ptime algorithm

	CFA2 for first-class control
	Restricted CPS
	Abstract semantics
	Correctness

	Summarization for first-class control
	Workset algorithm
	Soundness
	Incompleteness

	Variants for downward continuations

	Pushdown flow analysis using big-step semantics
	Iterative flow analyses
	Big CFA2
	Syntax and preliminary definitions
	Abstract interpreter
	Analysis of recursive programs
	Discarding deprecated summaries to save memory
	Analysis of statements

	Exceptions
	Mutation
	Managing the stack size

	Building a static analysis for JavaScript
	Basics of the JavaScript object model
	Handling of JavaScript constructs

	Evaluation
	Scheme
	JavaScript
	Type inference
	Analysis of Firefox add-ons

	Related work
	Program analyses for first-order languages
	Polyvariant analyses for object-oriented languages
	Polyvariant analyses for functional languages
	Analyses employing big-step semantics
	JavaScript analyses

	Future work
	Conclusions
	Proofs
	Proofs for CFA2 without first-class control
	Proofs for CFA2 with first-class control

	Complexity of the CFA2 workset algorithm
	Bibliography

